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Chapter 3
Guidobaldo Del Monte’s Controversy with
Giovan Battista Benedetti on Positional Heaviness
Jürgen Renn and Pietro Daniel Omodeo

3.1 Introduction

Guidobaldo del Monte’s handwritten notes on scientific and technical matters
Meditatiunculae de rebus mathematicis contain, among other things, a criticism
of the basic principles of mechanics set down by Giovan Battista Benedetti in De
Mechanicis. This was printed as the third section of his book Diversarum specu-
lationum mathematicarum et physicarum liber (Turin, 1585). Both Benedetti and
delMonte are central figures in the history of sixteenth-century science: Benedetti
provided an important source for understanding the struggles of early modern
engineer-scientists with the ancient heritage of mechanical knowledge from Aris-
totle, Archimedes and others, whereas del Monte can be regarded as the leading
expert on mechanics of the generation before Galileo. Del Monte also authored
of one of the most influential texts on mechanics of the early-modern period, the
Mechanicorum liber (Pesaro, 1577). Del Monte’s remarks on Benedetti’s book
document a disagreement over the conceptual foundations of mechanics and are
thus worthy of close consideration for their historical and theoretical meaning.1

Let us briefly recapitulate the biographies of the two protagonists of this con-
troversy. Guidobaldo del Monte was born on 11 January 1545 in Pesaro in the
territories of the Duke of Urbino. He was taught mathematics by Federico Com-
mandino, who also instilled in him a love of the classics, especially Archimedes.
In 1577, del Monte published his first book, the Mechanicorum liber, a compre-
hensive work on mechanics dealing with the five simple machines: the lever, the
pulley, the wheel and axle, the wedge and the screw, whose properties were in

1This chapter draws on a talk delivered by Jürgen Renn and Peter Damerow entitled “Guidobaldo’s
marginal notes on Benedetti’s Diversarum speculationum.” It presented for the first time del Monte’s
marginal notes in his copy of Benedetti’s Diversae speculationes. These marginal notes have mean-
while been published with a commentary in the Edition Open Access series of the Max Planck Re-
search Library for the History and Development of Knowledge under the title The Equilibrium Con-
troversy. The loss of our dear colleague Peter Damerow has forced us to shift the focus of this con-
tribution.
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turn derived from those of the balance and the lever. In 1581, this work was trans-
lated into Italian. In the role of intermediary and patron, del Monte furthered the
career of young Galileo, in particular by securing appointments for him, first in
Pisa and then in Padua. In later life, del Monte pursued his scientific studies and
made scientific instruments at the family castle in Montebaroccio until his death
in 1607. In 1592, the year of his move to Padua, Galileo visited delMonte atMon-
tebaroccio and together they performed the experiments on projectile motion that
led to the discovery of the law of fall (Renn, Damerow, and Rieger 2001). On
that occasion, and possibly even earlier, they must have also discussed founda-
tional issues of mechanics, including Benedetti’s approach. TheMeditatiunculae,
bearing witness to del Monte’s familiarity with Benedetti’s work, is an assembly
of writings on a variety of subjects ranging from sundials, astronomy, geometry,
perspective, mechanics to optics.2

The second protagonist of our controversy, Giovanni Battista Benedetti was
born in Venice on 14 August 1530. He was first educated by his father and, ac-
cording to a brief autobiographical remark of Benedetti, later studied the first four
books of Euclid’s Elements under the guidance of Niccolò Tartaglia, probably be-
tween 1546 and 1548. Tartaglia may have also introduced the young Benedetti
to the problems of mechanics as he had treated them in his own book, Quesiti
et inventioni diverse (1546). In 1558, Benedetti joined the court of Ottavio Far-
nese, the duke of Parma, as an engineer-scientist, and in 1567 moved to Turin to
the court of Emanuele Filiberto, the duke of Savoy. He died in Turin on 20 Jan-
uary 1590. Before publishing his major work on mechanics, Diversarum specu-
lationum mathematicarum et physicarum liber in 1585, he had written a number
of works dealing, among other topics, with geometrical problems, falling bodies
and sundials. Diversae speculationes first appeared in Turin and was reissued
in Venice in 1586 and in 1599. The work comprises the following six treatises:
on arithmetical theorems, on perspective, on mechanics, on certain opinions of
Aristotle (in particular, the theory of motion), on the fifth book of Euclid and on
physical and mathematical problems.3

A recent analysis of the Renaissance controversies on equilibrium centers
on the edition of the marginal notes that del Monte made in his personal copy
of Benedetti’s book (Renn and Damerow 2012). Against the background of this
study, it is now possible to reassess the historical and theoretical significance of
the pertinent remarks made by del Monte in hisMeditatiunculae. These remarks
are very close to the marginal observations he made in his copy of Benedetti’s

2A first analysis and an overview of del Monte’s handwritten work has been carried out by Roberta
Tassora in her Ph.D. dissertation (Tassora 2001). This is freely available from the ECHO website at
http://echo.mpiwg-berlin.mpg.de/content/mpiwglib/pesaro/#tassora.
3The last treatise is dealt with in many letters.
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Diversae speculationes, so that the two sets of texts appear to illuminate each
other. We will therefore discuss these marginalia and the passages of the Medi-
tatiunculae on Benedetti at the same time. Moreover, between the folios of the
Meditatiunculae in question (ff. 145 and 146), dealing with chapters two and
three of Benedetti’s De Mechanicis respectively, one finds an inserted sheet (f.
145bis) with a drawing of Galileo’s famous comparison of the inclined plane with
the bent lever. This insertion does not seem to be cursory since the problem of
the bent lever is also relevant for del Monte’s analysis of Benedetti’s passages.
Additionally, del Monte’s familiarity with Diversae speculationes as well as his
criticism of Benedetti’s viewpoints sheds new light on a controversial issue of the
history of science: the relationship between Benedetti and Galileo. These docu-
ments in fact bear indirect evidence of Galileo’s acquaintance with the theories
of Benedetti. At the same time, they explain his reluctance to mention Benedetti
who was regarded critically by Galileo’s friend and supporter del Monte.

3.2 The Incipit of Benedetti’s De mechanicis

Benedetti’s book on mechanics begins with a brief introduction that is significant
in that it reveals a strong “modernist commitment.” The author is convinced that
the advancement of science is a future-oriented process in which novelty plays a
crucial role. As a scholar ofmechanics, he acknowledges to owemuch to thework
of past generations (scripserunt multi multa). Yet, he maintains that nature and
practice (natura ususque) always bring to light something previously unknown.
Accordingly, he promises to provide those interested in mechanical problems (his
qui in hisce mechanicis versantur) with new insights or, in his words, “things that
have never been tried nor explained with sufficient accuracy before” (Benedetti
1585, 141). The importance that he attaches to his treatise De mechanicis is evi-
denced by his hope and expectation that future generations would remember him
for his scientific achievements in the field of mechanics. Before dealing with
the foundational principles of mechanics, Benedetti stresses the unprecedented
originality of his contributions but makes no explicit reference to any forerun-
ners or contemporary scholars. Del Monte, who had published his Mechanico-
rum liber only a few years earlier, would undoubtedly have been offended by
this omission. In addition, Benedetti’s “progressivist” conception of scientific re-
search potentially contrasted the past-oriented idea of knowledge as a restoration
that prevailed during the Renaissance. This aspect could also mark a profound
disagreement between his own and del Monte’s (and the Commandino school’s)
purist understanding of science as a restoration of classical sources through accu-
rate philological and mathematical work in the wake of Archimedes.
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3.2.1 Pondus and Gravitas

The first section of Benedetti’s De mechanicis presents the basic thesis that the
weight of a body placed at the extremity of a balance varies in relation to the
different inclinations of the beam. This idea goes back to the medieval scientia
de ponderibus and, in particular, to the work of Jordanus Nemorarius (thirteenth
century) who authored a very influential text on weights, the Liber de ponderibus
(1533). At the beginning of chapter one of his book onmechanics, Benedetti talks
of a varying quantity of heaviness, or gravity (gravitas), belonging to a weight
(pondus) or a body placed on a balance beam. The terminological distinction
between pondus, as a kind of absolute weight or heavy thing, and gravitas, as a
downward tendency that can act with more or less force on the body (depending
on the inclination of the beam), is not rigorous. Benedetti treats the pondus at
times as the varying quantity to be taken into consideration, as is shown by ex-
pressions like “proportio ponderis in C ad idem pondus in F” and “unde fit [...]
pondus magis aut minus grave,” in De mechanicis, chapter II (Benedetti 1585,
142). Given these semantic fluctuations, we will translate pondus as “body” or as
“weight” and gravitas as “heaviness” or as “weight,” depending on the context.

The essentialist meaning Benedetti attaches to the term pondus can be traced
back to an implicit scholastic background: pondus is a “substance” (in the Aris-
totelian meaning of hypokeimenon) while gravitas is its “accidental” property,
which can be increased or diminished without affecting the essence. In other
words, we are confronted with an Aristotelian treatment of quantity (in this case
the gravitas) as the propriety of an entity (in this case the pondus), whose degree
of heaviness varies in a qualitative manner.

The profound relation of Benedetti’s conceptionwith scholastic Aristotelian-
ism emerges even more clearly when one considers that the concept of gravitas
secundum situm from which his conception derives was itself shaped by Aris-
totelian logic. More specifically, the concept of gravitas secundum situm can be
understood as having been introduced in thirteenth-century mechanics to avoid
fallacies that could arise without such a differentiation and specification of the
concept of weight.

Aristotle dealt with such fallacies inOn Sophistical Refutations, V (166b36–
167a14). The fallacy relevant to the medieval differentiation of the concept of
weight is the fallacia secundum quid, referring to erroneous reasoning based
on inappropriate generalization. Petrus Hispanus, a contemporary of Jordanus
Nemorarius, explained the meaning of this fallacy in his logical treatise Tracta-
tus sive Summule Logicales (Hispanus 1972, 157–158). In this book, secundum
quid means either a “diminution” of a concept through restriction of its defini-
tion (secundum quid et simpliciter), or the designation of a subject through one of
its parts or characteristics (denominatio totius per partem). A fallacy secundum



3. Del Monte’s Controversy with Giovan Battista Benedetti (J. Renn and P. D. Omodeo) 57

quid occurs if an identity is established between something considered in a par-
ticular respect and the same thing considered absolutely (that is, simpliciter). For
instance, the existence of a depicted animal does not imply the existence of the
animal simpliciter. Thus, the argument “est animal pictum [...] ergo est animal”
is fallacious.4

The analogy with the concept of gravitas secundum situm is evident: ac-
cording to the doctrine of positional heaviness, weight must be considered in a
particular respect, that is, in dependence of its collocation. Just as a general con-
cept has sometimes to be subjected to a restriction of its meaning (diminutio) by
considering it secundum quid before any conclusions can be drawn, so the concept
of weight has also to be specified with regard to its collocation before reaching
any conclusions, for example, about the equilibrium of a balance.

It should be remarked that according to scholastic logic the determination of
heaviness secundum situm does not allow conclusions to be made about the abso-
lute weight of a body. The acknowledgment of the relativity of weight, depending
on the specification, would eventually undermine Aristotelian natural philosophy
on the basis of considerations derived from Aristotelian logic. Benedetti for in-
stance, connected the relativity of heaviness not only to positional heaviness, but
also to themedium inwhich a body is submerged andmoves. In the fourth book of
Diversae speculationes, entitled Disputationes de quibusdam placitis Aristotelis,
he famously based his treatment of the motion and the fall of bodies through a
medium on Archimedean hydrostatics. This theoretical background permitted
him (as later Galileo) to relativize heavy and light, depending on the density of
the medium. Moreover, he considered the resistance of the medium as a factor
to be taken into account in dynamics and thereby reassessed the existence, and
even the necessity, of void in nature. Paradoxically, Benedetti (and later Galileo)
attached to this Archimedean research agenda a clear anti-Aristotelian signifi-
cance, although as we have shown, the idea of determining weight secundum
quid (the quid being a factor like position or medium) was directly derived from
Aristotelian concepts.

3.2.2 De mechanicis, Chapter I: “On the different positions of the beams of
a balance”

In chapter I, Benedetti notes that “a body (pondus) [...] acquires a larger or smaller
weight (gravitas) depending on the different ratio of the beam’s position” (pon-
dus [...] maiorem, aut minorem gravitatem habet, pro diversa ratione situs ipsius
brachii). According to Benedetti, a body has the greatest heaviness when the

4We are grateful to Dominik Perler for a helpful discussion of this point, as well as for his suggestions
of pertinent literature.
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beam at whose extremity it is loaded is in the horizontal position. His idea is
based on a simple common-sense intuition: if one considers an equal-arms bal-
ance suspended at its center, the weight of a loaded body:

• is borne entirely by the fulcrum when resting vertically upon it,
• is entirely hanging on the fulcrum when suspended vertically below it,
• is not supported in any way by the fulcrum when the beam is in the hori-
zontal position.

Figure 3.1: Figure in Benedetti’s De mechanicis, Chapters I and II.

In the first case, the body completely rests or leans on the center (nititur), and
the center in turn hinders (impellet) the downward tendency of the weight. In the
second case, the body is suspended vertically (pendet) and the center “attracts” it
(attrahet), in the sense that it hinders its natural tendency to fall down (inclinatio).
Hence, the body attains its maximum weight in the third case. If the beam of a
balance moves upward, departing from the horizontal position, the weight slowly
decreases and reaches its minimum at the top when the beam is in the vertical
position. If the rotatory motion around the fulcrum continues, now downward,
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the weight increases again until it reaches its maximum in the horizontal position.
It then diminishes until it is suspended entirely below the fulcrum. Benedetti
visualizes these variations of weight in dependence on the position (situs) thanks
to a diagram comparing the lines connecting the weight to the center of the world
in different cases, and precisely if the beam:

• is horizontal,
• is raised upward, or
• (which is equivalent to the second case) is moved downward with the same
angle as in the second case.

The parallel lines, called lineae inclinationis or lineae itineris, indicate the
direction in which a body would fall if it were free. The closer these lines are to
the center of the beam, Benedetti says, the “less heavy” the body becomes (Figure
3.1).

In his copy of Benedetti’s book, del Monte wrote a brief annotation in the
margin of chapter one: “this first chapter is derived entirely from our treatise on
the balance in the Mechanicorum liber.”5 Clearly, he vindicated the relevance
of his treatise for Benedetti’s speculations, in spite of the latter’s claims of orig-
inality. It should be remarked, however, that del Monte’s treatment of the bal-
ance, based on the concept of center of gravity, was significantly different from
Benedetti’s, which was based on an original reworking of positional heaviness.
For del Monte though, he merely reassessed a concept received from authors such
as Jordanus Nemorarius, Tartaglia and Cardano, all of whom he personally op-
posed. In his book on mechanics, del Monte had in fact criticized the concept
of positional heaviness. Downplaying Benedetti’s theory as a repetition of his
predecessor’s theories, he could therefore claim that his own treatment already
included a résumé (as well as a criticism) of Benedetti’s approach.

3.2.3 De mechanicis, Chapter II: On the proportion of weights at the ex-
tremities of a balance beam in a position other than the horizontal

In chapter II, Benedetti deals with the proportions of a weight placed at the ex-
tremity of a balance beam if its position is not horizontal (De proportione pon-
deris extremitatis brachii librae in diverso situ ab orizontalis). The thesis to be
demonstrated is the following: “The proportion between [the weight of] a body
(pondus) atC and [the weight of] the same body (pondus) at F corresponds to that
between the whole beam BC and its part BU which is [set on the beam BC and
is] delimitated by the fulcrum and the [intersection between the beam and the]

5“Hoc primum caput to[tum] desumptum est a n[ostro]Mechanicorum libri tractatu de lib[ra].”



60 3. Del Monte’s Controversy with Giovan Battista Benedetti (J. Renn and P. D. Omodeo)

inclination line FUM that connects the weight at F to the center of the world”
(Benedetti 1585, 142. Figure 3.2).

Figure 3.2: Benedetti discusses in De mechanicis, chapter II, the same figure as
in De mechanicis, chapter I.

For the sake of simplicity, we represent these relations symbolically, in mod-
ern terms:

C ∶ F = BC ∶ BU

where C is the weight in the horizontal position and F in the inclined position;
BC is the beam and BU the part of the beam BC between the center B and the
perpendicular line drawn from F.

Benedetti’s demonstration is as follows. He imagines placing a weight D on
the other extremity of the balance that has the same proportion to C as F, that is,
the following proportion expressed in modern terms:

D ∶ C = BU ∶ BC.
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In accordance with Archimedes’s De ponderibus I.6, the balance will be stable
if the weight C is loaded at U since weights and distances from the fulcrum are
proportional by supposition.

The next step is to show that F : C = BF : BU (where BF is the beam, hence
BF = BC). In order to demonstrate this, Benedetti resorts to the mental model
(imaginemur) of a string hanging vertically from F to which a weight equal to C
is suspended. He claims that it is visually evident that the weight has the same
effect at F as atU. The same is valid for the case in which the weight is suspended
from U and intersects the circumference described by the rotation of the beam at
a point E. In both cases, the balance would remain horizontal since the weight
C at F, U or E would balance the weight at D. Benedetti further argues that the
balance under consideration can be treated like a bent lever with a horizontal and
an inclined arm (FBD or EBD): “si brachium BE consolidatum fuisset [...]” (If
the beam BE was made solid [...]).

The author concluded that his reasoning has satisfactorily demonstrated his
thesis: “A body (pondus) is more or less heavy (grave) the more or less it hangs
from (pendet) or rests on (nititur) the fulcrum” (Benedetti 1585, 142). And he
deems this resting on or hanging from the fulcrum to be the most direct cause
(haec est causa proxima, et per se) of the positional changing of a weight.

As an additional commentary, Benedetti remarks that in his diagram he
supposes the inclination line CO to be perpendicular to CB and parallel to BQ,
whereas CO and BQ in fact converge at the center of the sphere of the elements
(centrum regionis elementaris), that is, the Earth. But for the sake of his present
argumentation, this angle is negligible and one may remain with the assumed
perpendicularity and parallelism. Benedetti thus developed a method to quantify
positional heaviness that corresponds to the modern concept of “torque.”

3.3 Del Monte’s Rebuttal of the Negligibility of the World’s Center

As will be shown in the following, only in his initial treatment of the inclined
balance did Benedetti neglect to consider the convergence of the inclination lines
to the center of the elements, that is, in chapter one of De mechanicis. This omis-
sion gave rise to criticism in the Meditatiunculae by del Monte, who, to dispel
Benedetti’s reasoning in De mechanicis, chapter I, did not accept his premises.
Rather, he assessed Benedetti’s arguments from his perspective, relying on the
idea of center of gravity as developed in his own book on mechanics.

A marginal note by del Monte documents his disagreement with Benedetti’s
conclusion: “Thus, in this manner, a weight (pondus) more or less hangs from or
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rests on the center; this is the next cause and the [cause] in itself [of the variation
in heaviness].”6 As a marginal note (Figure 3.3), he wrote:

because that [that is, the greater or smaller extent to which a weight
rests at the center] is neither the next [cause] nor the [cause] in itself.
For the weight at F of the arm BF is not equally heavy as the weight
U of the arm BU ; nor is the weight at E of the arm BE equally heavy
as the weight at U of the arm BU. Thus, this entire demonstration is
false.7

Figure 3.3: Del Monte’s marginal note to De mechanicis, chapter II.

This means that del Monte did not accept the claim that a weight is equally
heavy in different positions on the beam of the balance, provided the projections
of the beam along the horizontal are the same length or rather, as Benedetti writes,
the distances between the projections of the beam on the horizontal and the center
have the same lengths.

To find del Monte’s counter-arguments, we shall look to the Meditatiuncu-
lae, f. 145, Contra Cap. 2 Jo. de Benedicti de Mechanicis. As mentioned, he
basically rejected Benedetti’s perspective by objecting that he did not take into

6“[…] unde fit ut hoc modo pondus magis aut minus a centro pendet aut eidem nititur: atque haec
est cause proxima, et per se [...].”
7“non est neque proxima neque per se; nam [pond]us in F brachii [BF] non est equegrave ut pondus
in U brachii BU ; [nec] pondus in E brachii BE est equegrave ut pondus [in] U brachii BU. Unde tota
haec demonstratio falsa est” (Renn and Damerow 2012, 207).
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due account the finite distance of the weights from the center of the world and
hence the fact that the plumb lines are not parallel to each other, as Benedetti
assumed in this part of his treatise.

In his diagram (Figure 3.4), del Monte compared the line LUS parallel to the
line AQ, connecting the fulcrum B of the balance with the center of the worldM,
with the line FM connecting the upper weight F and the lower weight E with the
center of the worldM. S is the point at which the line LUS meets the circle that the
beam makes around the fulcrum, which is above the position of the lower weight
E.

Figure 3.4: Del Monte’s reconsideration of Benedetti’s analysis of the bent lever.



64 3. Del Monte’s Controversy with Giovan Battista Benedetti (J. Renn and P. D. Omodeo)

He next considered a bent lever made of the oblique arm BS, rigidly con-
nected to the straight arm BS, assuming that BU is half BD. If a weight is now
placed at S that is double the weight at D, the bent lever will be in equilibrium,
as del Monte showed with reference to his book, because the center of gravity of
the weights at S and at D will be at the point R, which will be in its lowest place
on the vertical line BQ. He therefore concluded that it is the weight at S, but not
the lower weight E, that will be equally heavy as the weight at U.

He proceeded to demonstrate this in greater detail by considering the propor-
tions in which the line connecting the two weights is cut by the perpendicular BQ
for the two cases, that is, the weight placed at S and the weight placed at E. Del
Monte concluded that the same weight is heavier at S than at E. He then turned
to a closer consideration of the upper weight F. Again he constructed a bent lever
LBD in equilibrium in order to compare it with the bent lever formed with the
upper weight F. Again he showed that the weight is heavier at L than at F.

Del Monte concluded by summarizing that the entire fallacy is due to
Benedetti assuming that the weight at F would gravitate in the same way as at U,
which would only be the case, according to del Monte, if it were to hang freely.

3.4 Benedetti’s Generalization: FromWeights to Forces

Chapter three of Benedetti’s De Mechanicis contains a generalization of the re-
sults of chapter two or, rather, presents a general rule concerning the action of
forces (virtutes) on the beams of a balance, also in the case that they do not act
vertically downward but also with an acute or obtuse angle (Figure 3.5). Benedetti
resumes the result of the previous chapter as follows: the length of the line per-
pendicularly connecting the center to the line of inclination (the line BU in the
diagram) allows the quantity of the positional force (quantitas virtutis [...] in [...]
situ) of a weight (F in the diagram) to be established. Thus, Benedetti calls the
positional weight a force and this is the presupposition to generalize from gravi-
tas the action of what he calls virtutes moventes, or “moving forces.” The thesis
of this chapter is summarized in its title: “That the quantity of any given weight
(pondus) or moving force in relation to another quantity can be determined thanks
to the perpendicular projections connecting the center of the balance to the line
of inclination.”

Benedetti draws two diagrams showing a balance at whose extremities two
weights or forces act in different directions. At the left extremity B, a weight E
has a downward tendency while, at the right extremity, a weight C acts making
an acute or an obtuse angle. According to Benedetti, the length of the perpen-
dicular projection drawn from the center to the inclination line, OT, permits the
determination of the distance OI on the beam at which the same force acting
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vertically downward produces the same effect. Given this equation, Benedetti
can determine how much the force acting in a non-perpendicular direction has
to be augmented in order to balance an equal weight acting perpendicularly on
the opposite beam. This measure is given according to the following proportion
(expressed in modern terms):

E ∶ C = BO ∶ OI

where E is the weight acting vertically on the extremity B; C is the virtus movens
acting on the opposite extremity A with an angle; BO is the left beam and OI the
part of the right beam OA determined as explained above.

Figure 3.5: Benedetti’s representation of forces acting on a balance in arbitrary
directions.

In his argumentation, Benedetti thus equates a balance (BOI) with a bent
lever (BOT). Accepting this equation, he concluded that, according to commonly
shared knowledge (communi quadam scientia), the weights or forces that are re-
quired to obtain a perfect balance can easily be calculated.

The chapter ends with a cosmological corollary: “The closer the center O
of the balance is to the center of the elementary sphere, the less heavy (minus
grave) it becomes.” In fact, the angles between the beam and the inclination lines
become progressively smaller.

3.5 Del Monte’s Misunderstanding

In his notes on folio 146 of the Meditatiunculae, del Monte grappled with
Benedetti’s instructions of how to determine positional heaviness in the case
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of forces acting in an arbitrary direction. These he refuted at length under the
erroneous assumption that Benedetti had claimed forces can be indiscriminately
replaced by weights. Like Benedetti, del Monte considered a bent lever BOAC
with fulcrum O, weights E and C, a straight arm BO and a bent arm OAC to
discuss the two cases of an acute and an obtuse angle BAC (Figure 3.6).

He first recapitulated Benedetti’s procedure, assuming that a vertical lineOT
drawn from the fulcrum to the line AC represented the oblique arm of the bent
lever. He stated that when the weight C is placed at the end of the horizontal
line OI, whose length is the same as that of the perpendicular OT, according to
Benedetti it will be in equilibrium with the weight E if the weight C is to the
weight E as is BO to OT or OI. Del Monte then summarized Benedetti’s claim
that when a force represented by the weight C acts along the line TC, the bent
lever formed by the straight arm BO and the oblique arm OTC will also be in
equilibrium, which he doubted.

Figure 3.6: Del Monte’s critical reworking of Benedetti’s representation of forces
acting on a balance in arbitrary directions.

Del Monte reformulated this claim by stating that the same weight C will be
in equilibrium with the weight E, whether it is placed on the straight balance BOI
or on the broken bent lever BOTC. He thus replaced Benedetti’s conception of a
force acting along an oblique line with that of a weight always tending downward
and as a result arrived at absurd conclusions.

Del Monte then showed that the same weight will be heavier on the horizon-
tal at point I than along the bent lever at T, demonstrating that the bent lever TOB
will not be in equilibrium if the straight lever BOI is in equilibrium. To show this,
del Monte again proceeded by finding the center of gravity of the weights E and
C placed at T. More precisely, del Monte determined a position for the weight C
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where the bent lever is in equilibrium, a position, however, that is distinct from
T. Thus it follows that T cannot be the position of equilibrium. For this purpose,
he extended the line BT to D, just beneath I, so that it is immediately evident that
if the weight C is placed at D, the center of gravity of the two weights will be just
beneath the fulcrum.

Using the same pattern, he continued by showing that the bent lever BOC
cannot be in equilibrium because its center of gravity S can never fall on the
perpendicular line OU through the fulcrum. Finally, he applied this argument
to the broken bent lever BOTC. Del Monte next addressed the case in which the
bent lever is characterized by an obtuse angle BAC, showing that the weight at T
is lighter than the weight at I. In his concluding remarks, however, he began to
waver. Once again, he stated that Benedetti is completelymistakenwhen applying
his procedure to weights. But he did admit that this may be true when dealing with
a force.

As an afterthought, del Monte once again criticized Benedetti’s appeal to
common sense: he did not feel this to be worthy of an expert mathematician.
And as a second afterthought, he constructed an extreme case in which it is im-
mediately clear that the broken bent lever cannot be in equilibrium if weights are
attached to it rather than forces.

The following considerations enable del ’s marginal annotations to
Benedetti’s De Mechanicis, chapter III, to be understood. These are not
perfectly legible, but nonetheless their meaning becomes clear in light of the
Meditatiunculae:

If we understand that a weight is at C, as we can assume from his
own words, then CT must also be understood as being solid [and
connected with] the solid lines TO […] If we hence understand that
C is a weight and not moving, [the proposition] is false. If it is un-
derstood that C moves as […] of a man, it can be true, since what
moves is not a weight. [But] if he himself assumes in the follow-
ing that [this] can be demonstrated [also for a weight], nothing […]
therefore as is evident in chapter 7. All demonstrations of the author
are founded on these two chapters inasmuch as they are the first fun-
daments of mechanics; once their falsity is recognized, everything is
rejected.8

8“si intelligamus p[ondus] in C, ut supponi p[otest] ex verbis ipsius, intelligendum est C[T] quoque
consolidatam consolidatis TO […]. Unde si intelligamus C pondus et non movens, falsa est i[ta]que
si intelligatur C movens ut homi[…] vera esse pote[st] quod [deleted: non] moveat non esse pondus
s[i...] ipse [vero] in sequenti accipiat [hoc atque ponderi?] posse demonstratum quare nihil […]
ut patet in 7 cap. In his duobus cap. fundantur omnes authoris demonstrationes ita ut sunt praecipua
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3.6 On Tartaglia: Diverging Approaches

Del Monte’s and Benedetti’s criticisms of Tartaglia’s conception of positional
heaviness help us to understand where these two scholars converge and diverge
on the issue of the equilibrium (or lack of equilibrium) of a balance deflected from
its horizontal position, and also the reasons for the presumed equilibrium or ten-
dency to restore it. Moreover, their arguments reveal a different attitude toward
the medieval tradition of the scientia de ponderibus and the gravitas secundum
situm.

3.6.1 The Tradition of Jordanus, Tartaglia and Cardano

The concept of gravitas secundum situm, or positional heaviness, was extensively
employed in Jordanus Nemorarius’s Liber de ponderibus. Del Monte owned and
annotated a sixteenth-century Nuremberg edition of the book, commented and
illustrated by Petrus Apianus. Del Monte’s handwritten annotations document
his general disagreement with the approach of this scholastic forerunner, who
did not know the Archimedean concept of center of gravity and tried therefore to
develop a deductive science of weights relying solely on the Aristotelian theory
of motion.9 We have already hinted at the Aristotelian conceptuality underly-
ing the concept of gravitas secundum situm. In his book, Jordanus stated that
a deflected balance would return to the horizontal position (his second proposi-
tion) (Nemorarius 1565, B2 r). According to Jordanus, the upper weight acquires
more positional heaviness than the lower one due to the fact that its descent is less
oblique. In fact, he postulated that positional heaviness depends on the oblique-
ness of descent of a weight (his fourth postulate) and that “a more oblique descent
partakes less of the straight [descent] for the same quantity [of path]” (fifth postu-
late) (Nemorarius 1533, A4 r). The determination and possibly the quantification
of obliqueness was therefore essential to establish the behavior of a deflected bal-
ance.

In the sixteenth century, Tartaglia in Quesiti, et inventioni diverse (1546),
and Cardano in the first book of De subtilitate (first edition, 1550) and in Opus
novum de proportionibus (1570), expounded some different methods for deter-
mining descent and reinforced Jordanus’s second proposition that the deflected
balance returns to the horizontal position. A brief account of three ways of deter-
mining positional heaviness is given in the following. The first two are derived
from Tartaglia and the last from Cardano.

mechanicorum fundamenta quorum cognita falsitate omnia rem[oventur]” (Renn and Damerow 2012,
213).
9We are grateful to Martin Frank who discovered these annotations and shared them with us.
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Figure 3.7: According to Tartaglia, the body at I is positionally heavier than the
body atV since the projection of the arc IL on the verticalXY is greater
than the projection of VF,WF.

DESCENT: A first method of dealing with positional heaviness consisted in
comparing the lengths of the projections of the equal arcs described by the motion
of opposite balance beams—one ascending and one descending—on the vertical
line of descent to the center of the world.

As Tartaglia’s diagram shows (Figure 3.7), the vertical component of decent
of the upper weight is always larger than that of the lower. Thus, the former
acquires more heaviness (secundum situm) than the latter and the balance returns
to the horizontal position.

ANGLE OF CONTACT: Tartaglia’s second method of determining posi-
tional heaviness consists in comparing the angles between the circular path of the
beams and the perpendicular lines connecting the weights to the center of the el-
ements. These angles “of contact” are also called “curvilinear angles” or “mixed
angles” since they result from the intersection of a straight line downward and a
curved line, that of the circle circumscribing the balance (Figure 3.8).

By comparing the angles of contact of the two weights, Tartaglia could es-
tablish that the higher angle is always smaller than the lower, therefore the higher
weight has a straighter descent and is positionally heavier. The inclined balance
would therefore return to the horizontal position. It should be noted that Tartaglia
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perceived the comparison of curvilinear angles as problematic. He considered
the ratio of two such angles to be less than any ratio between determined quan-
tities. As a consequence, no weight placed on the positionally lighter side of the
deflected balance could compensate for the other weight and keep the balance
inclined. On the contrary, any additional weight—no matter how small—would
have p roduced an opposite displacement of the balance beam toward the vertical.

Figure 3.8: According to Tartaglia, the body at B is positionally heavier than the
body at A since the angle of contact between BD and the arc BF is
smaller than the angle between AH and the arc AF.

THE ANGLE BETWEEN THE SUPPORT AND THE BEAMS: We
have considered two ways of determining positional heaviness on the basis of
Tartaglia’s Quesiti. Assuming that positional heaviness depends on the obliquity
and straightness of descent, positional heaviness can be determined either from
the projections of the descents on the vertical, or the curvilinear angles that
are produced by the intersection of the descent arcs and the lines connecting
the weights to the center of gravity. Cardano considered three criteria for
establishing positional heaviness which he mistakenly regarded as equivalent:
first, the distance of the beam from the vertical; second, its distance from the
horizontal; and third, an angle that he called meta. This was the angle between
the support of the balance and the beam. Commenting on the diagram that is
here reproduced (Figure 3.9), he explained:
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Aristotle says that this happens when the support is above the bal-
ance, because the angle QBF of the meta is larger than the angle
QBR. And similarly, when the support is QB, the meta will be AB,
and thus the RBAwill be larger than the angle FBA, but the larger an-
gle will render the weight heavier. […] The general reason is hence
this: the more the weights are removed from themeta or from the line
of descent along a straight or an oblique line, that is, [as measured]
by an angle, the heavier they are.10

Given these premises, Cardano contended that a weight will reach its
maximum positional heaviness in the horizontal position. He therefore shared
Nemorarius’s and Tartaglia’s opinion about the return of an inclined balance to
the horizontal position.

Figure 3.9: According to Cardano, there are three ways to determine positional
heaviness. The positional heaviness at point F, for instance, may be
determined by the horizontal FP, by the vertical FL, or by the angle
QBF.

10“Aristoteles dicit hoc contingere, quum trutina est supra libram, quia angulusQBF metae, maior est
anguloQBR. Et similiter quum trutina fueritQB, erit meta AB, et tunc angulus RBA, maior erit angulo
FBA, sed maior angulus reddit gravius pondus. […] Generalis igitur ratio haec sit: pondera quo plus
distant a meta seu linea descensus per rectam aut obliquum, id est, per angulum, eo sunt graviora”
(Cardano 1550, 17–18).
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3.6.2 Del Monte’s Critical Remarks on Positional Heaviness

Del Monte’s criticism of Benedetti, in the Meditatiunculae as well as in the
margin- al remarks of his Diversae speculationes, are closely related to his
criticism of Nemorarius, Cardano and Tartaglia in the Mechanicorum liber.
Here, he dealt extensively with the balance and provided a detailed discussion
of the theories of these scholars which he deemed to be irremediable. These
theories supported the idea that an inclined balance returns to the horizontal and
were thus at odds with his own treatment of the matter, which he based on the
Archimedean concept of center of gravity. Del Monte believed that an ideal
balance would remain in any position as long as it had equal arms, was hinged
on its fulcrum and was loaded with equal weights. The only difficulty in testing
this theory, he asserted, was the technical difficulty in constructing a perfect
balance. It should be noted, moreover, that he assumed that a center of gravity
meeting the requirement of his (and Pappus’s) definition of center of gravity
always exists:

The center of gravity is a certain point within it, from which, if it is
imagined to be suspended and carried, it remains stable andmaintains
the position which it had at the beginning, and is not set to rotation
by that motion.11

Apart from the conceptual irreconcilability between his own approach and
that of the Nemorarius school, del Monte tried to demonstrate the inconsistencies
of positional heaviness, also within the conceptual framework of his adversaries.
One of his main objections was based on a consideration of the cosmological con-
text, which he considered relevant to correctly treat the inclined balance, at least
with regards to positional heaviness. Of course, this aspect seems to be relevant
when considering Tartaglia’s remark that the difference in positional heaviness is
infinitesimally small and cannot be compensated by any finite weight resulting
from the infinitesimal difference between curvilinear angles.

Contrary to the assumptions of Nemorarius and his successors, del Monte
noted that the downward tendencies of the weights are not parallel but converge
at the center of the world. Since the directions toward the center of the world
from different points on the circular path of the end of the beam cannot be par-
allel, they are inappropriate for representing positional heaviness. From the fact
that those lines converge, he argued further that the lower weight should actually

11“Centrum gravitatis uniuscuiusque corporis est punctum quoddam intra positum, a quo si grave ap-
pensum mente concipiatur, dum fertur, quiescit; et servat eam, quam in principio habebat positionem:
neque in ipsa latione circumvertitur” (Monte 1577, 1r). Translation in (Drake and Drabkin 1969, 259),
revised in (Renn and Damerow 2010, 57).
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become positionally heavier than the higher one. His idea is clearly illustrated by
a diagram (Figure 3.10).

Figure 3.10: According to del Monte, if S represents the center of the world, then
the mixed angle SEG between the circular path of the weight at E
and the direction to the center of the world is less than the mixed
angle SDG. Thus, contrary to what his adversaries claim, by their
own suppositions the weight placed at E must be heavier than that
placed at D.
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Del Monte objected that, from the point of view of positional heaviness, it is
not in the horizontal position that a body weighs the most but at that point where
a straight line drawn from the center of the world touches at a tangent the circle
described by the balance arm. Certainly, if the center of the world were infinitely
distant and all lines of direction converging at it were perpendicular and parallel
to each other, then the extreme point would mark the horizontal position of the
balance arm, also at the fulcrum. Still, for a finite distance from the center of
the world, the point where the weight is heaviest lies instead slightly below the
horizontal through the fulcrum. Del Monte even demonstrated that the closer the
balance is to the center of the world, the further this “extreme point” (where the
weight is heaviest) will lie from the horizontal position of the balance arm (as
seen from the fulcrum).

Del Monte’s crucial objection to the Nemorarius school was that one has not
to consider both weights separately, but rather as being connected by the beam
of the balance. He drew attention to the fact that one must not compare two
descents, but rather a descent on one side with a rise on the other. According
to the positional heaviness, the two weights must be equal. Thus, also from the
premises of his adversaries, del Monte could claim that the deflected balance does
not return to the horizontal.

3.6.3 Benedetti on Tartaglia’s and Nemorarius’s Shortcomings

Benedetti confronted the ideas of Tartaglia and Nemorarius on positional heav-
iness in section seven of his De mechanicis. There, Benedetti stressed that by
taking into account the distance from the fulcrum to the line of inclination, his
approach to the positional effect of a weight was distinct from and superior to
Tartaglia’s consideration in the Jordanus tradition of straightness of descent.

More specifically, Benedetti refuted several of Tartaglia’s claims. In partic-
ular, he disputed the central thesis that when a balance is moved from its hori-
zontal position, it will return to this position because the body that has moved
upward will attain greater positional heaviness than the body which has moved
downward. As we have seen above, Jordanus’s and Tartaglia’s arguments were
based on a comparison of the descents of the two weights. In other words, the
balance would have to break in the middle to visualize these descents. Benedetti
now pointed to the simple fact, already emphasized by del Monte, that when one
weight descends, the other must ascend, and that the corresponding arcs will al-
ways be similar to each other and positioned in the same way. He concluded that
no positional difference in heaviness can be produced in the way that Tartaglia
argued.
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Nevertheless, Benedetti did not believe in an indifferent equilibrium of such
a balance when considered in a cosmological context. In the continuation of his
argument, he came to the conclusion (correct from amodern viewpoint) that when
such a balance in equilibrium is displaced from its original horizontal position, the
weight that has been lowered will actually assume a greater positional heaviness
than the one that has been lifted up:

Therefore the weight of A in this [lower] position will be heavier than
the weight of B.12

He reached this conclusion by taking into account that the lines of inclination
of the two weights are not parallel to each other but must converge at the center
of the elements. The effective lever arms of the two weights must hence be de-
termined by perpendicular lines drawn from the center of the balance to these
lines of inclination. It now turned out that the perpendicular line, corresponding
to the weight that had been lowered, is longer than the line corresponding to the
weight that had been lifted. Consequently, the lower weight had become heavier
positionally so that one would expect the balance to tilt into a vertical position.

Benedetti added some more critical remarks on Tartaglia’s consideration of
positional heaviness. As we have seen, Tartaglia had argued in Quesiti that the
upper weight attains a greater positional heaviness than the lower one, but that this
difference is arbitrarily small and can therefore not be compensated by any finite
weight. This conclusion was reached by comparing curvilinear angles of contact
on each side of the balance. In his analysis of this argument, Benedetti again took
into account that the lines of inclination are not parallel to each other but must
converge toward the center of the elements, just has del Monte had done before
him. Clearly, since Tartaglia’s argument hinges on angles of contact, which are
infinitesimally small compared to ordinary angles, even such a small deviation
from the parallel must be relevant. Taking this into account, Benedetti was able
to construct a contradiction, thus refuting Tartaglia’s argument. He concluded:

Now the whole error into which Tartaglia and Jordanus fell arose
from the fact that they took the lines of inclination as being parallel
to each other.13

In summary, Benedetti introduced a way of determining the positional effect
of a weight or a force that, in the cases he considered, essentially produces the
12“Pondus igitur ipsius A in huiusmodi situ, pondere ipsius B gravius erit” (Benedetti 1585, 148).
Translation in (Drake and Drabkin 1969, 176).
13“Omnis autem error in quem Tartalea, Iordanusque lapsi fuerunt ab eo, quod lineas inclinationum
pro parallelis vicissim sumpserunt, emanuit” (Benedetti 1585, 150). Translation in (Drake and
Drabkin 1969, 177).
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same results as the application of the modern concept of torque. In particular,
Benedetti had managed to go beyond the consideration of weights tending down-
ward to include forces acting in an arbitrary direction. In this way, he was also
able to take into account the fact that, on a spherical Earth, the lines of inclination
of weights on a balance are not parallel. He did not manage, however, to success-
fully apply his measure of positional heaviness to challenging objects such as the
inclined plane.

3.7 Conclusions: The Triangulation Benedetti-del Monte-Galileo

In this chapter, we have dealt with del Monte’s and Benedetti’s different
approaches to mechanics emerging from their reflection on the balance and their
treatment of earlier authors. Relative to the issue of positional heaviness, del
Monte’s self-positioning is essentially external whereas Benedetti positioned
himself within the tradition of the Nemorarius school, albeit critically. He
explicitly mentioned Tartaglia and Cardano as relevant sources for his treatment,
whereas he omitted to mention del Monte (Benedetti 1585, f. A3r). In spite of
their opposite intentions and mutual suspicion, Benedetti and del Monte shared
several opinions and sometimes reached the same conclusions, albeit following
different paths: both considered the cosmological center of gravity as relevant for
an evaluation (and criticism) of Tartaglia’s concept of positional heaviness, and
both remarked that one cannot treat the two beams of a balance separately, but
rather that they must be considered simultaneously. Moreover, both stressed the
ambiguity of the concept of mixed angle and the difficulty of its determination.
Nevertheless, their approaches were quite different. As mentioned, Benedetti
still worked within the framework of the gravitas secundum situm, while del
Monte renounced it in favor of the concept of centrum gravitatis. For del Monte,
the displacement of the balance toward the vertical position was an absurdity
that revealed the untenability of Tartaglia’s premises. Benedetti deemed this
vertical tilt to be the consequence of a correct analysis of the balance based
on a conceptuality close to the modern idea of torque, in consideration of the
cosmological context. Furthermore, one can stress the importance of Benedetti’s
attempt to determine the quantity of positional heaviness, a fact that distinguishes
him from his predecessors. Additionally, unlike del Monte, he treated the balance
by also taking into consideration the general case of forces acting arbitrarily on
the beams.

In conclusion, it may be useful to recall the problems linked to the trian-
gulation Benedetti-del Monte-Galileo which might be elucidated by considering
the equilibrium controversy. Although the relationship between Benedetti and
Galileo is still obscure, the remarkable proximity of these authors on several is-
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sues is well known in the history of mechanics. The most recent historical ac-
counts tend in fact to neglect or even deny the possibility of such influence.14 By
contrast, the influence of Benedetti on Galileo was assumed and underscored by
earlier scholars like Caverni, Duhem, Wohlwill and Mach (Sarpi 1996).15 It is
helpful to mention the most important issues common to these authors: the at-
tempt at a theory of motion based on Archimedean hydrostatics, the treatment of
the acceleration of fall and its causes, the formulation of what in hindsight appear
as proto-inertial principles, a similar treatment of the bent lever, the analysis of
the relation between vibrating strings and musical tones, their views on the irra-
diation of surfaces and on thermal and hydrostatic phenomena, and, last but not
least, their support of the Copernican world system.16 Although many of these
themes and ideas belonged to the shared knowledge of preclassical mechanics,
in some respects the agreement of their approaches is so striking that one may
suspect that this is not mere coincidence.17 Yet, the question of Benedetti’s direct
impact on Galileo remains unclear, in particular as Benedetti’s work was never
mentioned by Galileo.

There are a number of possible connections between Benedetti and Galileo
that have been considered in the past. For instance, Benedetti is referred to by
Galileo’s Pisan colleague Jacopo Mazzoni in In universam Platonis et Aristotelis
philosophiam praeludia from 1597 (Mazzoni 1597). He is often mentioned in
the Galileo Studies as the addressee of a famous letter by Galileo arguing for the
Copernican system (30 May 1597; Galilei 1968, vol. II, 194–202). In his book,
Mazzoni referred to Benedetti’s discussion of the possibility that motion along a
straight line can be continuous,18 a theme that was later taken up by Galileo in
chapter 20 ofDeMotu, which also refers explicitly to Copernicus (Mazzoni 1597,
193; Galilei 1960b, 326). It is conceivable that such issues had been discussed,
inspired by Benedetti’s work, betweenGalileo, Mazzoni and delMonte during the
latter’s stay in Tuscany in 1589. We would like to thank Pier Daniele Napolitani
for drawing our attention to this possibility and to the above-mentioned passages.

14See the discussion by Ventrice in (Bordiga 1985, 732–736) who mentions Drake, Drabkin, Fredette
and Galluzzi among those who are skeptical about a concrete influence of Benedetti on Galileo. No-
table exceptions are the commentaries by Carugo and Geymonat in their edition of Galileo’s Discorsi
(Carugo and Geymonat 1958). Bertoloni Meli even considers the possibility of del Monte and Galileo
discussing Benedetti, but nevertheless rejects any substantial influence by the latter on Galileo’s think-
ing because that influence supposedly would have arrived too late, see (Bertoloni Meli 2006, 61–65).
15For an overview of such potential connections, see the discussion in (Bordiga 1985, 732–736) who
also mentions Mersenne, Clavius and Cardinal Michelangelo Ricci as possible intermediaries.
16For an overview, see (Bordiga 1985).
17See, for instance, (Drake and Drabkin 1969, 36).
18See (Benedetti 1585, 183–184). For a historical discussion of the context of this argument in con-
temporary technology, see (Freudenthal 2005).
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Another potential intermediary was Galileo’s friend Paolo Sarpi who dis-
cussed Benedetti’s theory of fall in Pensieri naturali e metafisici. However, the
Meditatiunculae may provide the strongest evidence of Galileo’s acquaintance
with Benedetti’s theses.

An important clue is page 145bis of theMeditatiunculae (Figure 3.11), which
is the page opposite the one containing the detailed criticism of Benedetti dealt
with in this chapter. This page shows Galileo’s construction of the inclined plane
reduced to a bent lever.

Figure 3.11: Del Monte, Meditatiunculae, p. 145bis showing Galileo’s construc-
tion relating the bent lever to the inclined plane.

This fact is all the more noteworthy since delMonte’s notebook, on an earlier
page, also contains his own problematic adoption of Pappus’s analysis of the in-
clined plane (Monte 1587, 64. Figure 3.12). In his writings, Galileo had criticized
this analysis, substituting it with his own solution of the problem which makes
use of the bent lever conceptualized in the same way as Benedetti (Galilei 1960a,
172). Del Monte therefore must have learned about this proof from Galileo, and
he must also have seen the connection to Benedetti’s methods. In any case, it
is likely that the two scientists discussed this connection and quite plausible that
Galileo became familiar with Benedetti’s work through del Monte. Galileo be-
gan to correspond with del Monte in 1588, three years after the publication of
Benedetti’s Diversae speculationes and shortly before he embarked on the writ-
ings that later became known as De Motu (Galilei 1960b).19 Galileo first wrote
a dialogue version of De Motu and then an essay in twenty-three chapters. Only
the second essay version of these writings contains his proof of the law of the

19For a thorough discussion of the chronology of these writings, see (Giusti 1998).
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Figure 3.12: Del Monte’s construction related to the inclined plane on p. 64 of his
notebook. The construction was adapted from Pappus’s erroneous
solution.

inclined plane, the argument about continuity of motion along a straight line, and
a mention of Copernicus. This version was most likely written after Galileo be-
came familiar with Benedetti’s work. His treatise on mechanics, which for the
first time discussed explicitly the problem of the effective lever arm, was written
much later, certainly after he had visited del Monte in 1592 during his journey
to Padua. Hence, it seems most likely that Galileo was already familiar with key
ideas of Benedetti at the time of writing these works.

Recent research into del Monte’s biography has shown that del Monte and
Galileo must have met as early as 1589 in Tuscany (see Menchetti’s contribution
in this volume). They might even have met jointly with Galileo’s teacher,
Mazzoni who, as mentioned earlier, cited Benedetti in his work. Thus, del
Monte, Mazzoni and Galileo may have discussed Benedetti’s Diversarum spec-
ulationum … liber, leading Galileo to reconsider his work in progress on motion
and, in particular, his treatment of motion along inclined planes, making use of
Benedetti’s theory of the bent lever that was mentioned in del Monte’s notebook.
But Benedetti’s impact on Galileo probably went even further than that. Galileo
may now have taken the Copernican hypothesis much more seriously than before,
discussing this as well as other subjects with Mazzoni. In the above-mentioned
letter of 1597, Galileo praised Mazzoni for his Praeludia and reminded him of
the controversial issues on which they had meanwhile reached an agreement,
trying now also to press him on the Copernican hypothesis.20

20This scenario was developed in a joint discussion with Pier Daniele Napolitani. Concerning
Benedetti’s adherence to the Copernican system, see (Di Bono 1987; Omodeo 2009).
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In particular, Galileo’s concept of momento21 and his analysis of the bent
lever—crucial to both his mechanics and his theory of motion—evidently
emerged from the midst of the controversy about positional heaviness. In that
debate, Galileo took a position much closer to Benedetti than to del Monte.
Rather than gravitas secundum situm, Galileo used the concept of momento or
momentum that del Monte had introduced in his book by quoting Commandino’s
definition of the center of gravity. But while del Monte made no further use
of this in his mechanics, Galileo took this concept from the respected Urbino
school, gave it a new meaning that was taken from Benedetti and made it a pillar
of his own conception, which included Commandino’s definition of the center of
gravity:

Center of gravity is defined to be that point in every heavy body
around which parts of equal moments are arranged.22

The evidence for this claim concerning Benedetti’s legacy in Galileo’s work
derives from the marginal notes del Monte made in his copy of Benedetti’s book,
as well as from his entries in the Meditatiunculae (Monte 1587) which contain
traces of Galileo’s intervention in this controversy.

According to Benedetti and Galileo (and contrary to Tartaglia and del
Monte), the effective length of the lever arm, obtained by drawing a perpen-
dicular from the fulcrum of the balance to the line of inclination, determines
the effectiveness of a weight or a mechanical constellation. In his Mechanics,
Galileo later stressed how important it is to carefully define the effective
distances of weights from their support:

There is one thing that must be considered before proceeding further,
and this concerns the distances at which heavy bodies come to be
weighed; for it is very important to know the sense in which equal
and unequal distances are to be understood, and in what manner they
must be measured.23

In his analysis of the inclined plane using the bent lever, Galileo also made
clear that this procedure is critical for determining themomento of a given weight

21See the extensive discussion in (Galluzzi 1979).
22“Centro della gravità si diffinisce essere in ogni corpo grave quel punto, intorno al quale consistono
parti di eguali momenti” (Galilei 1968, vol. 2, 159). Translation in (Galilei 1960a, 151). See also
(Galilei 2002).
23“Un’altra cosa, prima che più oltre si proceda, bisogna che sia considerata; e questa è intorno alle
distanze, nelle quali i gravi vengono appesi: per ciò che molto importa il sapere come s’intendano
distanze eguali e diseguali, ed in somma in qual maniera devonomisurarsi” (Galilei 1968, vol. 2, 164).
Translation in (Galilei 1960a, 156–157).
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(Galilei 1968, vol. 2, 181; Galilei 1960a, 173). As discussed earlier, in his Diver-
sarum speculationum […] liberBenedetti convincingly demonstrated the efficacy
of this method for determining the magnitude of a force or weight according to
its position.

In conclusion, the very existence of del Monte’s annotations on his copy of
Benedetti’s Diversarum speculationum […] liber provides a definitive answer to
the question of who actually read this book.24 It is also difficult to imagine that
he did not discuss his views on Benedetti’s mechanics with Galileo, views that he
considered both misguided and profoundly challenging, as is made evident in his
handwritten notes. It was most probably del Monte, Benedetti’s fervent opponent
in matters of mechanics, who served as a conduit to Galileo. At the same time,
he also made it virtually impossible for Galileo to openly admit to Benedetti’s
influence if did he not want to jeopardize the protection of this most important
patron of his early career.

3.8 Appendix 1: Benedetti’s De Mechanicis, Chapters I–III

DE MECHANICIS
Scripserunt multi multa, et quidem scitissime, de mechanicis, at cum natura

ususque aliquid semper vel novum, vel latens in apertum emittere soleant, nec in-
genui aut grati sit animi, posteris inuidere, si quid ei contigerit comperuisse prius
tenebris involutum: cum tam multa ipse ex aliorum diligentia sit consequutus.
Paucula quaedam futura, ut reor, non ingrata his qui in hisce mechanicis ver-
santur, nusquam ante hac tentata, aut satis exacte explicata in medium proferre
volui: quo vel iuvandi desiderium, vel saltem non ociosi ingenioli argumentum
aliquod exhiberem: atque vel hoc uno modo me inter humanos vixisse testatum
relinquerem.

3.8.1 De differentia situs brachiorum librae. CAP. I.

Omne pondus positum in extremitate alicuius brachii librae maiorem, aut mi-
norem gravitatem habet, pro diversa ratione situs ipsius brachii. Sit exempli gra-
tia B centrum, aut, quod dividit brachia alicuius librae, et ABQ verticalis linea,
aut, ut rectius dicam, axis orizontis, et BC unum brachium dictae librae, et in C
sit pondus, et CO linea inclinationis, seu itineris C versus centrum mundi, cum
qua BC angulum rectum constituat in puncto C. Existente igitur in huiusmodi
situ brachio BC dico pondus C gravius futurum, quam in alio quolibet situ quia
supra centrum B omnino non quiescet, quemadmodum in quovis alio situ faceret.

24The knowledge that he had read it, however, is not entirely new. See (Renn, Damerow, and Rieger
2001, 74).
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Figure 3.13

Ad quod intelligendum, sit dictum brachium, in situ BF cum eodem pondere in
puncto F et linea itineris seu inclinationis dicti ponderis sitFUM per quam lineam
dictum pondus progredi non potest, nisi brachium BF breuius redderetur. Unde
clarum erit quod pondus F aliquantulum supra centrum B mediante brachio BF
nititur. Est quidem verum, quod pondus C nec ipsum etiam per lineam CO profi-
ciscetur, quia iter extremitatis brachii est circularis, et CO in uno quodam puncto
est contingens. Sit hoc iter ACQ oportet nunc praesupponere pondus extremitatis
brachii debere tanto magis centro B inniti, quanto magis linea suae inclinationis
(ponamus FUM) propinqua erit dicto centro B quod sequenti cap. probabo, ut
exempli gratia, sit F super U punctum medii ex aequo inter C et B quapropter
UB aequalis erit UC unde sequetur dictum pondus gravius futurum pro parte FC
quam pro ea, quae est AF et minus supra centrum B pro dicta parte FC quam pro
parte AF quieturum; et dictum brachium quanto magis orizontale erit a situ BF
tanto minus supra dictum centrum B quiescet, et hac ratione gravius quoque erit,
et quanto magis vicinum erit ipsi A a dicto F tanto magis super centrum B quoque
quiescet, unde tanto quoque levius existet. Idem dico de omni situ brachii per
girum inferiorem CQ ubi pondus pendebit a centro B dictum centrum attrahendo,
quemadmodum superius illud impellebat. Haec vero omnia cap. sequenti melius
percipientur.
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3.8.2 De proportione ponderis extremitatis brachii librae in diverso situ ab
orizontali. CAP. II.

Proportio ponderis in C ad idem pondus in F erit quemadmodum totius brachii
BC ad partem BU positam inter centrum et lineam FUM inclinationis, quam pon-
dus ab extremitate F liberum versus mundi centrum conficeret. Quod ut facilius
intelligamus imaginemur alterum brachium librae BD et in extremo D locatum
aliquod pondus minus pondere C ut BU pars BC minor est BD. Clare cognosce-
tur ex 6 lib. primi de ponderibus Archimedis, quod si in puncto U collocatum
erit pondus ipsius C libra nihil penitus a situ orizontali dimovebitur. Sed perinde
est quod pondus F aequale C sit in extremo F in situ brachii BF quam ut sit in
punctoU in situ ipsius BU orizontali. Ad cuius rei evidentiam imaginemur filum,
FU perpendiculare, et in cuius extremo U pendere pondus, quod erat in F unde
clarum erit quod eundem effectum gignet, ac si fuisset in F quod, ut iam dix-
imus remanens affixum puncto U brachii BU tanto minus grave est situ ipsius C
quantoUBminus est ipsoBC. Idem assero si brachium esset in situEB quod facile
cognoscere poterimus, si imaginemur filum appensum ipsiU brachii BC et usque
ad E perpendicularem, in quo extremo appensum esset pondus aequale ponderi
C et liberum ab E brachii BE unde libra orizontalis manebit. Sed si brachium
BE consolidatum fuisset in tali situ cum orizontali BD et appenso pondere C in
E libero a filo, nec ascenderet, neque descenderet, quia tantum est quod ipsum
sit appensum filo, quod pendet ab U quantum quod ab ipso liberum appensum
fuisset E brachii BE et hoc procederet ab eo quod partim penderet a centro B et si
brachium esset in situ BQ totum pondus centro B remaneret appensum, quemad-
modum in situ BA totum dicto centro anniteretur. Unde fit ut hoc modo pondus
magis aut minus sit grave, quo magis aut minus a centro pendet, aut eidem nititur:
atque haec est causa proxima, et per se, qua fit ut unum idemque pondus in uno
eodemque medio magis aut minus grave existat. Et quamvis appellem latus BC
orizontale, supponens illud angulum rectum cum CO facere, unde angulus CBQ
fit ut minor sit recto, ob quantitatem unius anguli aequalis ei, quem duae CO et
BQ in centro regionis elementaris constituunt, hoc tamen nihil refert, cum dictus
angulus insensibilis sit magnitudinis. Ab istis autem rationibus elicere possumus,
quod si punctus U erit ex aequo medius inter centrum B et extremum C pondus F
autM pendebit, aut nitetur pro medietate dicto centro B et si dictumU erit propius
B quam puncto C pendebit ab ipso, aut nitetur ipsi amplius quam ex medietate, et
si magis versus C minus quam ex medietate nitetur.
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3.8.3 Quod quantitas cuiuslibet ponderis, aut virtus movens respectu al-
terius quantitatis cognoscatur beneficio perpendicularium ductarum
a centro librae ad lineam inclinationis. CAP. III.

Figure 3.14

Ex iis, quae a nobis hucusque sunt dicta, facile intelligi potest, quod quantitas
BU quae fere perpendicularis est a centro B ad lineam FU inclinationis, ea est,
quae nos ducit in cognitionem quantitatis virtutis ipsius F in huiusmodi situ, con-
stituens videlicet linea FU cum brachio FB angulum acutum BFU. Ut hoc tamen
melius intelligamus, imaginemur libram BOA fixam in centro O ad cuius etrema
sint appensa duo pondera, aut duae virtutes moventes E et C ita tamen quod linea
inclinationis E id est BE faciat angulum rectum cum OB in puncto B. Linea vero
inclinationis C id est AC faciat angulum acutum, aut obtusum cum OA in puncto
A. Imaginemur ergo lineamOT perpendicularem lineaeCA inclinationis, undeOT
minor erit OA ex 18 primi Euclidis. Secetur deinde imaginatione OA in puncto
I ita ut OI aequalis sit OT et puncto I appensum sit pondus aequale ipsi C cuius
inclinationis linea parallela sit lineae inclinationis ponderis E supponendo tamen
pondus aut virtutem C ea ratione maiorem esse ea, quae est E qua BO maior est
OT absque dubio ex 6. lib. primi Archi. De ponderibus BOI non movebitur situ,
sed si loco OI imaginabimur OT consolidatam cum OB et per lineam TC attrac-
tam virtute C similiter quoque continget ut BOT, communi quadam scientia, non
moveatur situ. Est ergo quod proposuimus verum quantitatem alicuius ponderis
respectu ad eam, quae est alterius debere depraehendi a perpendicularibus, quae
a centro librae ad lineas inclinationis exiliunt. Hinc autem innotescit facillime,
quantum vigoris, et vis pondus, aut virtus C ad angulum rectum cum OA min-
ime trahens, amitttat. Hinc quoque corollarium quoddam sequetur, quod quanto
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propinquius erit centrumO librae centro regionis elementaris, tanto quoqueminus
erit grave.

3.9 Appendix 2: Del Monte’sMeditatiunculae, ff. 145 and 146

Tassora’s transcription has been slightly revised here.

3.9.1 Contra Cap. 2 Jo. de Benedicti de Mechanicis

Figure 3.15

Inquit auctor in demonstratione idem pondus in F, aeque grave esse ut in U
et in E. Quod est tamen falsum.

Nam lineae FM AQ non sunt aequidistantes, cum in centrum mundi conve-
niant.

Ac propterea ducta per U linea LUS ipsi AQ aequidistante; erit UL inter FU
AB; UE vero inter US et BQ.
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Quare ducta SRD, erit BD ad BU, ut DR ad RS. Ac propterea si BU dimidia
est ipsius BD, et SR erit dimidia ipsius RD.

Si igitur ducatur BS, quae intelligatur consolidata cum BD ponaturque pon-
dus in S duplum ponderis D, aequeponderabunt pondera SD ex distantiis BD RS
ita constitutis, cum sit R ipsorum centrum gravitatis in linea BQ. Hoc est in infimo
loco. Ut ex nostris mechanicis patet.

Pondus igitur in S aequegrave erit, atque U non autem pondus in E, ut ipse
existimat. Idem enim pondus gravius est in S quam in E.

Ut ipse fatetur quod probabitur quoque hoc modo. Nam productis LS DE
in X est quidem DZ ad ZX, ut DR ad RS. Atque maiorem habet proportionem
DZ ad ZE, quam ad ZX ; duplum igitur ponderis D in X ipsi D aequeponderabit.
Positum ergo in E ipsi D non aequeponderabit. Et ut aequeponderet, maius erit
quam duplum.

Similiter ad partem F ducta LGB quoniam LU est GB aequidistans; erit DG
ad GL, ut DB ad BU. Si igitur intelligatur BL consolidata cum BD, idem pondus,
tam in L, quam in U eidem ponderi in D aequeponderabit, cum G sit centrum
gravitatis ponderum in L D existentium. Non igitur pondus in F aequegrave est,
ut idem pondus in U.

Praeterea secet FD ipsam LU in H. Patet idem pondus in U et in H ipsi
ponderi in D aequeponderare. Cum sit DK ad KH, ut DB ad BU, et DG ad GL.
Minorem autem proportionem habetDK adKF, quam adKH.Minus igitur pondus
in F quam duplum ipsius D, ipsi D aequeponderabit.

Et quibus etiam constat idem pondus in F, et in U, et in E, diversi modo
gravitare. Gravius est enim in situ E quam in U et in F. In U vero gravius, quam
in F.

Fallacia vero argumenti est cum inquit, existente filo FUE perpendiculari,
idem pondus in F et in U eodem modo gravitabit. Quod est quidem verum, si
intelligatur quod eodem modo gravitet in F a quo libere pendet.

Cum vero inquit, quoniam punctum fili U secet BC in U, ergo pondus in
puncto U librae DBU, ac propterea in U brachii BU eandem habebit gravitatem
ut in F; est falsum. <Nunc> enim valet consequentia pondus in filo in U eandem
habet gravitatem ut in F. Ergo pondus in U brachii BU eandem habet gravitatem
ut in F. Veluti quoque falsum est propter filum pondus in E est aequegrave, ut
pondus in U brachii BU. Non est igitur haec vera et proxima causa, et per se
harum gravitatum. Ut ipse profitetur.

3.9.2 Against Chapter 2 of Giovanni Benedetti’s [treatise] on Mechanics

The author claims in his proof that the same weight in F is equally heavy as in U
and in E, but this is false.
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The lines FM AQ are namely not equally distant, because they converge in
the center of the world.

And therefore if the line LUS is drawn throughU equidistant to AQ,ULwill
be between FU AB, but UE between US and BQ.

For if one draws SRD, BD will be to BU, as DR to RS. And hence if BU is
half of the same BD, also SR will be the half of the same RD.

If therefore BS is drawn, which shall be understood as being rigidly con-
nected with BD, and if a weight is placed in S which is double the weight [in] D,
the weights SD will be in equilibrium from the distances BD RS thus constituted,
because their center of gravity R is in the line BQ; that is in the lowest place; as
is evident from our [book on] mechanics.

The weight in S will therefore be equally heavy as [the weight in] U but not
as the weight in E as he believes. The same weight is namely more heavy in S
than in E.

As he himself admits this can also be proven in the following way. Because
when LS DE are prolongued [to meet ] in X, then evidently DZ is to ZX as is DR
to RS. But DZ has a larger proportion to ZE than to ZX ; the double of the weight
D in X will therefore be equally heavy as the same D. Hence placed in E it will
not be equally heavy as D. And if it were in equilibrium, it would be more than
double.

Similarly let LGB be drawn to F being LU equidistant to GB; DG will be to
GL as DB to BU. If now BL is understood as being connected with BD, the same
weight, in L as in U will be in equilibrium with the same weight in D, because G
is the center of gravity of the weights existing in L and D. Therefore the weight
in F is not equally heavy as the same weight in U.

Let furthermore FD cut the same LU in H. It is clear that the same weight in
U and in H will be equally heavy with regard to the same weight in D. Because
DK is to KB as is DB to BN and as DG to GL. But DK has a smaller proportion
to KF as to KH. Therefore in F a weight smaller than double [the weight in] D
will be in equilibrium with the same weight D.

From this it is also clear that the weight in F, in U, and in E gravitates in a
different ways. It is namely heavier in the position E than it is in U and in F. But
in U it is heavier than in F.

But the fallacy of the argument emerges when he says that, being the thread
FUE perpendicular, the weight in F has the same heaviness as in U. What is
indeed true if it is understood that it gravitates in the same way in F from which
it freely hangs.

But if he says, because the point of the thread U cuts BC in U, therefore the
weight in the point U of the balance DBU will hence have the same heaviness in
U of the lever arm BU as in F, then this is false. Now the consequence holds that
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the weight on the thread in U has the same heaviness as in F. Thus, the weight
in U of the beam BU has the same heaviness as in F. In the same way it is also
false that because of the thread the weight in E is equally heavy as the weight in
U of the arm BU. This is therefore not the true and next cause, and [the cause]
itself [per se] for them of these heaviness [proportions], contrary to that which he
contends.

3.9.3 Contra <capitulum> 3 eiusdem

Figure 3.16

Falsum est igitur ex dictis, quod in principio tertii <capitoli> inquit.
Praeterea demonstratio falsa quoque videtur.

Inquit enim sint E C duo pondera, aut duae virtutes, ita ut intelligat, et sup-
ponat virtutes ponderum officio fungi. Intelligantur itaque ad maiorem evidentia
duo pondera E C. Sitque BAC angulus primum acutus.

Et quoniam pondus (inquit) in I aequale C ipsi <E> aequeponderat, cum sit
pondus C ad pondus E, ut BO ad OI. Quia vero facta est OI aequalis OT inquit.

Si loco OI imaginabimur OT consolidata cum OB, et per lineam TC attrac-
tam virtuteC, similiter quoque continget, ut BOT, communi quadam scientia, non
moveatur situ.

Fateor me hanc quamdam communem scientiam non intelligere.
At perpendamus sensum quod nil aliud significat, nisi quod idem pondus

ipsi C aequale, in I, rectam libram BOI, idemque pondus C consolidatam libram
BOTC, ponderi E aequeponderat. Quod esse non potest.

Nam si intelligatur linea BA horizonti aequidistans. Centroque O circulus
describatur IT, idem pondus gravius erit in I, quam in T.
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Quare pondus in T ipsi C aequale non aequeponderabit libram TOB.
Quod patet etiam ducta primum OQ linea perpendiculari, quam ipse lineam

verticalem, et axem horizontis nuncupat. Deinde ducatur ID ipsi OQ aequidis-
tans, ducaturque BFTD: erit BF ad FD, ut BO ad OI. Si igitur intelligatur OD
consolidata cum OB, idem pondus in D ipsi E aequeponderabit, cum punctum F
ponderum in BD centrum gravitatis <existens> sit in linea OFQ. Pondus ergo in
T ipsi E non aequeponderabit. Multoque minus pondus C ipsi E aequeponderare
potest.

Nam si iungaturBC, fiatque utC adE, itaBS ad SC; erit S ponderum centrum
gravitatis. Quod quidem in linea OQ existere non potest.

Productis enim ID BC in X ; erit BO ad OI, ut BU ad UX. Quare ducta OX,
quae intelligatur consolidata cum BO, pondus in X aequale ipsi C ponderi E ae-
queponderabit. Itaque existente pondere C in recta linea BCX, intelligaturque
ducta CO consolidata cum OB; pondus C non aequeponderabit E.

Idem enim sequitur sive intelliganturque CO OB consolidatae, sive CT TO
OB consolidatae. Non enim punctum U esse potest centrum gravitatis ponderum
in B C existentium. Cum maiorem habeat proportionem BU ad UC quam ad UX,
ac propterea maiorem quam pondusC ad E. Quare centrum gravitatis S ponderum
in CB est inter UB. Numquam autem manebit libra COTB, donec punctum S sit
in linea OQ. Ergo non aequeponderabunt.

Similiter existente BAC angulo obtuso, ostendetur pondus in T minorem
habere gravitatem, quam in I.

Deinde pondus in X aequale ipsi C aequeponderare ipsi E; cum sit BU ad
UX, ut BO ad OI.

Si itaque sit S centrum gravitatis ponderum in B C; erit S inter UC. Quare
cum non sit S in linea OQ. Pondera C e consolidatam libram CTOB non aeque-
poberabunt.

Falsa igitur est demonstratio. Fallacia vero est, cum inquit, continget, ut
BOT communi quadam scientia, non <moveatur> situ.

Et est omnino falsum si intelligatur C esse pondus, quod in centrum mundi
sempre tendit. Ut ipse supponere videtur. Et ut ipse in seguentibus <capitolis>
accipit hoc tamquam de ponderibus demonstratum.

At vero si intelligatur I potentia movens, ut hominis, qui potest trahere T per
rectam lineam TC, tunc vera esse potest demonstratio. Ut patet ex tractatum de
axe in peritrochio nostrorum Mechanicorum.

Notandum tamen, quod conclusiones per communem quandam scientiam
deductae, non sunt periti mathematici cum propriis uti oporteat.

Ex hac etiam figura magis patet absurdum, hoc est pondera E C aequepon-
derare non posse.
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3.9.4 In Opposition to Chapter 3

It is therefore false, from what has been said, what he says in the beginning of the
third chapter. Moreover also the demonstration seems to be wrong.

He says namely that E and C are two weights, or two forces, so that he
understands and assumes that the forces take over the role of the weights. Let
therefore, for major clarity, E and C be understood to be two weights. And let
BAC first be an acute angle.

And since (he says) the weight in I equal to C will be equally heavy to that
in <E>, because the weight C is to the weight E as is BO to OI. Because OI is
made equal to OT he says.

If we shall imagine instead of OI OT to be rigidly connected with OB, and
along the line TC attracted by the force C, it is also similarly the case that BOT,
by a certain common science, will not change place.

I admit that I do not understand this certain common science.
We guess that this means nothing else but that the same weight, equal to C,

in I, by the straight balance BOI, and the same weight C, if the balance BOTC is
[conceived to be] solid, will be equally heavy to the weight E. Which cannot be.

For if it is understood that the line BA is equidistant from the horizon, and a
circle IT is described with center O, the same weight will be heavier in I than in
T.

Because the weight in T, equal to that [in] C, will not be in equilibrium with
the balance TOB.

This is also evident when one first draws the lineOQ perpendicularly, which
he calls vertical line and axis of the horizon. Then let ID be drawn equidistant
to OQ, and let BFTD be drawn: then BF will be to FD, as BO to OI. If therefore
OD is understood as being rigidly connected with OB, the same weight in D will
be in equilibrium with the same E, because the point F, the center of gravity of
the weights in BD, is in the line OFQ; hence the weight in T is not in equilibrium
with the weight E. And a much less smaller weight C can be in equilibrium with
the same E.

For if BC is connected, and if we let as C to E, be BS ad SC, then S will be
the center of gravity of the weights. This [center], however, cannot exist in the
line OQ.

If namely ID BC are prolongued [to meet] in X ; then BO will be to OI as
BU toUX. For which reason ifOX is drawn, which is understood as being rigidly
connected with BO, the weight in X, equal to the same C will be in equilibrium
with the weight E. Therefore, if the weight C exists in the straight line BCX, and
if it is understood that CO is drawn [and] rigidly connected with OB, the weight
C will not be in equilibrium with E.
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The same follows namely when alternatively CO and OB are understood to
be rigidly connected, or when CT, TO, and OB are connected. For the point U
cannot be the center of gravity of the weights existing in B C. Because BU has
to UC a larger proportion than to UX, and hence a major [proportion] than the
weight C to E. Because the center of gravity S of the weights in CB is between
UB. But the balance COTB will never remain, as long as the point S is in the line
OQ. Therefore they will not be in equilibrium.

Similarly, if there is an obtuse angle BAC, it is shown that the weight in T
has a smaller heaviness than in I.

Then the weight in X equal to the same C [is claimed] to be in equilibrium
to the same E; because BU is to UX, as is BO to OI.

If therefore S is the center of gravity of the weights in B C, S will be between
UC. For which reason because S is not in the lineOQ, theweightsC and the rigidly
connected balance CTOB will not be in equilibrium.

The demonstration is therefore false. Actually, the fallacy is [to say] that
BOT, according to some common science, does not <change> its place.

And it is totally false if C is understood to be a weight which always tends to
the center of the world as he seems to assume and as he in the following <chap-
ters> assumes it to be demonstrated as if it holds for weights.

To speak the truth, if I is understood to be a moving power, like that of a man
who can draw T along the straight line TC, then the demonstration can be true. In
fact, it is clear from our treatise on the axis on the wheel [de axe in peritrochio]
of ourMechanics.

It nevertheless has to be noted that the conclusions which are inferred by
a certain common science should not be used by an experienced mathematician
because he should use his own.

From this figure descends an even greater absurdity, namely that the weights
E C cannot be in equilibrium.
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