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Chapter 3
The Fundamental Techniques for the Second Degree

After these examples of first-degree methods we shall now go on with the prin-
cipal part of Old Babylonian algebra—postponing once more the precise deter-
mination of what “algebra” will mean in a Babylonian context. In the present
chapter we shall examine some simple problems, which will allow us to discover
the fundamental techniques used by the Old Babylonian scholars. Chapter 4 will
take up more complex and subtle matters.

BM 13901 #1

Obv. I

1. The surface and my confrontation I have heaped: 45′ is it. 1, the projection,
2. you posit. The moiety of 1 you break, 30′ and 30′ you make hold.
3. 15′ to 45′ you join: by 1, 1 is equal. 30′ which you have made hold
4. from the inside of 1 you tear out: 30′ the confrontation.
This is the problem that was quoted on page 9 in the Assyriologists’ “translit-

eration” and on page 13 in a traditional translation. A translation into modern
mathematical symbolism is found on page 12.

Even though we know it well from this point of view, we shall once again
examine the text and terminology in detail so as to be able to deal with it in the
perspective of its author.

Line 1 states the problem: it deals with a surface, here a square, and with its
corresponding confrontation, that is, the square configuration parametrized by its
side, see page 22. It is the appearance of the “confrontation” that tells us that the
“surface” is that of a square.

“Surface” and “confrontation” are heaped. This addition is the one that must
be used when dissimilar magnitudes are involved, here an area (two dimensions)
and a side (one dimension). The text tells the sum of the two magnitudes—that
is, of their measuring numbers: 45′. If c stands for the side of the square and□(c)
for its area, the problem can thus be expressed in symbols in this way:

□(𝑐) + 𝑐 = 45′(= 3
4 ).
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Figure 3.1: The procedure of BM 13901 #1, in slightly distorted proportions.

Figure 3.1 shows the steps of the procedure leading to the solution as they are
explained in the text:

A: 1, the projection, you posit. That means that a rectangle ⊏⊐(c, 1) is
drawn alongside the square □(c). Thereby the sum of a length and an area, ab-
surd in itself, is made geometrically meaningful, namely as a rectangular area
⊏⊐(𝑐, 𝑐 +1) = 3

4 = 45′. This geometric interpretation explains the appearance of
the “projection,” since the rectangle ⊏⊐(c,1) “projects” from the square as a pro-
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jection protruding from a building. We remember (see page 15) that the word was
originally translated as “unity” or “coefficient” simply because the translators did
not understand how a number 1 could “project.”

B: The moiety of 1 you break. The “projection” with adjacent rectangle
⊏⊐(c,1) is “broken” into two “natural” halves.

C: 30′ and 30′ you make hold. The outer half of the projection (shaded in
grey) is moved around in such a way that its two parts (each of length 30′) “hold”
the square with dotted border below to the left. This cut-and-paste procedure has
thus allowed us to transform the rectangle ⊏⊐(c,c+1) into a “gnomon,” a square
from which a smaller square is lacking in a corner.

D: 15′ to 45′ you join: 1. 15′ is the area of the square held by the two
halves (30′ and 30′), and 45′ that of the gnomon. As we remember from page 18,
to “join” one magnitude to another one is an enlargement of the latter and only
possible if both are concrete and of the same kind, for instance areas. We thus
“join” the missing square, completing in this way the gnomon in order to get a
new square. The area of the completed square will be 45′ + 15′ = 1.

by 1, 1 is equal. In general, the phrase “byQ, s is equal” means (see page 23)
that the area Q laid out as a square has 𝑠 as one of its equal sides (in arithmetical
language, 𝑠 = √𝑄). In the present case, the text thus tells us that the side of the
completed square is 1, as indicated in D immediately to the left of the square.

30′ which you have made hold from the inside of 1 you tear out. In order
to find the side 𝑐 of the original square we must now remove that piece of length
1
2 = 30′ which was added to it below. To “tear out” a from H, as we have seen
on page 18, is the inverse operation of a “joining,” a concrete elimination which
presupposes that a is actually a part ofH. As observed above (page 15), the phrase
“from the inside” was omitted from the early translations, being meaningless as
long as everything was supposed to deal with abstract numbers. If instead the
number 1 represents a segment, the phrase does make sense.

30′ the confrontation. Removing from 1 the segment 1
2 = 30′ which was

added, we get the initial side c, the “confrontation,” which is hence equal to 1 −
30′ = 30′ = 1

2 (extreme left in D).

That solves the problem. In this geometric interpretation, not only the num-
bers are explained but also the words and explanations used in the text.

The new translation calls for some observation. We take note that no explicit
argument is given that the cut-and-paste procedure leads to a correct result. On
the other hand it is intuitively clear that it must be so. We may speak of a “naive”
approach—while keeping in mind that our normal way to operate on equations,
for instance in the example solving the same problem on page 12, is no less naive.
Just as the Old Babylonian calculator we proceed from step to step without giving
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any explicit proof that the operations we make are justified, “seeing” merely that
they are appropriate.

Figure 3.2

The essential stratagem of the Old Babylonian method is the completion
of the gnomon as shown in Figure 3.2. This stratagem is called a “quadratic
completion”; the same term is used about the corresponding step in our solution
by means of symbols:

𝑥2 + 1 ⋅ 𝑥 = 3
4 ⇔ 𝑥2 + 1 ⋅ 𝑥 + ( 1

2 )
2 = 3

4 + ( 1
2 )

2

⇔ 𝑥2 + 1 ⋅ 𝑥 + ( 1
2 )

2 = 3
4 + 1

4 = 1

⇔ (𝑥 + 1
2 )

2 = 1.

However, the name seems to apply even better to the geometric procedure.
It is obvious that a negative solution would make no sense in this concrete

interpretation. Old Babylonian algebra was based on tangible quantities even
in cases where its problems were not really practical. No length (nor surface,
volume or weight) could be negative. The only idea found in the Old Babylonian
texts that approaches negativity is that a magnitude can be subtractive, that is,
pre-determined to be torn out. We have encountered such magnitudes in the text
TMS XVI #1 (lines 3 and 4—see page 27) as well as TMS VII #2 (line 35, the
“to-be-torn-out of the width”—see page 34). In line 25 of the latter text we also
observe that the Babylonians did not consider the outcome of a subtraction of 20′
from 20′ as a number but, literally, as something not worth speaking of.

Certain general expositions of the history of mathematics claim that the
Babylonians did know of negative numbers. This is a legend based on sloppy
reading. As mentioned, some texts state for reasons of style not that a magnitude
A exceeds another one by the amount d but that B falls short of A by d; we shall
encounter an example in BM 13901 #10, see note 4, page 46. In his mathemat-
ical commentaries Neugebauer expressed these as respectively 𝐴 − 𝐵 = 𝑑 and
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𝐵 − 𝐴 = −𝑑 (𝐴 = 𝐵 + 𝑑 and 𝐵 = 𝐴 − 𝑑 would have been closer to the ancient
texts, but even Neugebauer had his reasons of style). In this way, mathemati-
cians who only read the translations into formulas and not the explanations of the
meaning of these (and certainly not the translated texts) found their “Babylonian”
negative numbers.

As the French Orientalist Léon Rodet wrote in 1881 when criticizing mod-
ernizing interpretations of an ancient Egyptian mathematical papyrus:

For studying the history of a science, just as when one wants to ob-
tain something, ‘it is better to have business with God than with his
saints’.1

BM 13901 #2

Obv. I

5. My confrontation inside the surface I have torn out: 14‵30 is it. 1, the
projection,

6. you posit. The moiety of 1 you break, 30′ and 30′ you make hold,
7. 15′ to 14‵30 you join: by 14‵30°15′, 29°30′ is equal.
8. 30′ which you have made hold to 29°30′ you join: 30 the confrontation.
This problem, on a tablet which contains in total 24 problems of increasing

sophistication dealing with one or more squares, follows immediately after the
one we have just examined.

From the Old Babylonian point of view as well as ours, it is its “natural”
counterpart. Where the preceding one “joins,” this one “tears out.” The basic
part of the procedure is identical: the transformation of a rectangle into a gnomon,
followed by a quadratic complement.

Initially the problem is stated (line 5): My confrontation inside the surface
I have torn out: 14‵30 is it. Once again the problem thus concerns a square area
and side, but this time the “confrontation” c is “torn out.”

To “tear out” is a concrete subtraction by removal, the inverse of the “join-
ing” operation, used only when that which is “torn out” is part of that magnitude
from which it is “torn out.”2 The “confrontation” c is thus seen as part of (the
inside of) the area. Figure 3.3, A shows how this is possible: the “confrontation”
c is provided with a width (a “projection”) 1 and thereby changed into a rectangle
⊏⊐(c,1), located inside the square. This rectangle (shaded in dark grey) must thus

1Léon Rodet, Journal asiatique, septième série 18, p. 205.
2The inverse of the “heaping” operation, on the other hand, is no subtraction at all but a separation
into constitutive elements. See note 3, page 99.
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be “torn out”; what remains after we have eliminated ⊏⊐(c,1) from □(c) should
be 14‵30. In modern symbols, the problem corresponds to

□(𝑐) − 𝑐 = 14‵30.

Once more, we are left with a rectangle for which we know the area (14‵30) and
the difference between the length (𝑐) and the width (𝑐 − 1)—and once more, this
difference amounts to 1, namely the “projection.”

Figure 3.3: The procedure of BM 13901 #2.
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1, the projection, you posit. In Figure 3.3, B, the rectangle ⊏⊐(𝑐, 𝑐 − 1) is
composed of a (white) square and a (shaded) “excess” rectangle whose width is
the projection 1.

The moiety of 1 you break. The excess rectangle, presented by its width 1,
is divided into two “moieties”; the one which is detached is shaded in Figure 3.3,
C.

Cutting and pasting this rectangle as seen in Figure 3.3, D we once again get
a gnomon with the same area as the rectangle ⊏⊐(𝑐, 𝑐 − 1), that is, equal to 14‵30.

30′ and 30′ you make hold, 15′. The gnomon is completed with the small
square (black in Figure 3.3, E) which is “held” by the two moieties. The area of
this completing square equals 30′ × 30′ = 15′.

Next, the area of the completed square and its side are found: 15′ to 14‵30
you join: by 14‵30°15′, 29°30′ is equal.

Putting back the “moiety” which was moved around, we find the side of the
initial square, which turns out to be 29°30′+30′ = 30: 30′ which you have made
hold to 29°30′ you join: 30 the confrontation.

We notice that this time the “confrontation” of the square is 30, not 30′.
The reason is simple and compelling: unless c is larger than 1, the area will be
smaller than the side, and we would have to “tear out” more than is available,
which evidently cannot be done. As already explained, the Babylonians were
familiar with “subtractivemagnitudes,” that is, magnitudes that are predetermined
to be “torn out”; but nothing in their mathematical thought corresponded to our
negative numbers.

We also notice that the pair (14‵30°15′, 29°30′) does not appear in the ta-
ble of squares and square roots (see page 23); the problem is thus constructed
backwards from a known solution.

YBC 6967
Obv.

1. The igibûm over the igûm, 7 it goes beyond
2. igûm and igibûm what?
3. You, 7 which the igibûm
4. over the igûm goes beyond
5. to two break: 3°30′;
6. 3°30′ together with 3°30′
7. make hold: 12°15′.
8. To 12°15′ which comes up for you
9. 1‵ the surface join: 1‵12°15′.
10. The equal of 1‵12°15′ what? 8°30′.
11. 8°30′ and 8°30′, its counterpart, lay down.



46 3. Techniques Second Degree

Rev.

1. 3°30′, the made-hold,
2. from one tear out,
3. to one join.
4. The first is 12, the second is 5.
5. 12 is the igibûm, 5 is the igûm.

Second-degree problems dealing with rectangles are more copious than
those about squares. Two problem types belong to this category; others, more
complex, can be reduced to these basic types. In one of these, the area and the
sum of the sides are known; in the other, the area and their difference are given.

The above exercise belongs to the latter type—if we neglect the fact that it
does not deal with a rectangle at all but with a pair of numbers belonging together
in the table of reciprocals (see page 20 and Figure 1.2). Igûm is the Babylonian
pronunciation of Sumerian igi, and igibûm that of igi.bi, “its igi” (the relation
between the two is indeed symmetric: if 10′ is igi 6, then 6 is igi 10′).

One might expect the product of igûm and igibûm to be 1; in the present
problem, however, this is not the case, here the product is supposed to be 1‵, that
is, 60. The two numbers are represented by the sides of a rectangle of area 1‵ (see
line Obv. 9); the situation is depicted in Figure 3.4, A. Once more we thus have
to do with a rectangle with known area and known difference between the length
and the width, respectively 1‵ and 7.

It is important to notice that here the “fundamental representation” (the mea-
surable geometric quantities) serves to represent magnitudes of a different kind:
the two numbers igûm and igibûm. In our algebra, the situation is the inverse: our
fundamental representation is provided by the realm of abstract numbers, which
serves to represent magnitudes of other kinds: prices, weights, speeds, distances,
etc. (see page 16).

As in the two analogous cases that precede, the rectangle is transformed into
a gnomon, and as usually the gnomon is completed as a square “held” by the two
“moieties” of the excess (lines Obv. 3–10). The procedure can be followed on the
Figures 3.4, B and 3.4, C.

The next steps are remarkable. The “moiety” that was detached and moved
around (the “made-hold,” that is, that which was “made hold” the complemen-
tary square) in the formation of the gnomon is put back into place. Since it is the
same piece which is concerned it must in principle be available before it can be
“joined.” That has two consequences. Firstly, the “equal” 8°30′ must be “laid
down”3 twice, as we see in Figure 3.4, D: in this way, the piece can be “torn out”

3The verb in question (nadûm) has a broad spectrum of meanings. Among these are “to draw” or
“to write” (on a tablet) (by the way, the word lapātum, translated “to inscribe,” has the same two
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Figure 3.4: The procedure of YBC 6967.

from one (leaving the width igûm) and “joined” to the other (giving the length
igibûm). Secondly, “tearing-out” must precede “joining” (lines Rev. 1–3), even
though the Babylonians (as we) would normally prefer to add before subtract-
ing—cf. BM 13901 #1–2: the first problem adds the side, the second subtracts:
3°30′, the made-hold, from one tear out, to one join.

In BM 13901 #1 and #2, the complement was “joined” to the gnomon, here
it is the gnomon that is “joined.” Since both remain in place, either is possible.
When 3°30′ is joined to 8°30′ in the construction of the igibûm, this is not the
case: if one magnitude stays in place and the other is displaced it is always the

meanings). Since what is “laid down” is a numerical value, the latter interpretation could seem to
be preferable—but since geometrical entities were regularly identified by means of their numerical
measure, this conclusion is not compulsory.
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latter that is “joined.” Differently from our addition and the “heaping” of the
Babylonians, “joining” is no symmetric operation.

BM 13901 #10

Obv. II

11. The surfaces of my two confrontations I have heaped: 21°15′.
12. Confrontation (compared) to confrontation, the seventh it has become

smaller.
13. 7 and 6 you inscribe. 7 and 7 you make hold, 49.
14. 6 and 6 you make hold, 36 and 49 you heap:
15. 1‵25. igi 1‵25 is not detached. What to 1‵25
16. may I posit which 21°15′ gives me? By 15′, 30′ is equal.
17. 30′ to 7 you raise: 3°30′ the first confrontation.
18. 30′ to 6 you raise: 3 the second confrontation.

We now return to the tablet containing a collection of problems about
squares, looking at one of the simplest problems about two squares. Lines 11 and
12 contain the statement: the sum of the two areas is told to be 21°15′, and we
are told that the second “confrontation” falls short of the first by one seventh.4
In symbols, if the two sides are designated respectively 𝑐1 and 𝑐2:

□(𝑐1) + □(𝑐2) = 21°15′ , 𝑐2 = 𝑐1 − 1
7 𝑐1.

Formulated differently, the ratio between the two sides is as 7 to 6. This is
the basis for a solution based on a “false position” (see page 32). Lines 13 and
14 prescribe the construction of two “model squares” with sides 7 and 6 (making
these sides “hold,” see Figure 3.5), and finds that their total area will be 49+36 =
1‵25. According to the statement, however, the total should be 21°15′; therefore,
the area must be reduced by a factor 21°15′/ 1‵25. Now 1‵25 is no “regular”
number (see page 21)—that is, it has no igi: 1‵25 is not detached. We must
thus draw the quotient “from the sleeves”—as done in lines 15–16, where it is
said to be 15′ (that is, 1

4 ). However, if the area is reduced by a factor 15′, then
the corresponding sides must be reduced by a factor 30′: By 15′, 30′ is equal. It
remains finally (lines 17 and 18) to “raise” 7 and 6 to 30′.

4Here we see one of the stylistic reasons that would lead to a formulation in terms of falling-short
instead of excess. It might as well have been said that one side exceeds the other by one sixth, but in
the “multiplicative-partitive” domain the Babylonians gave special status to the numbers 4, 7, 11, 13,
14 and 17. In the next problem on the tablet, one “confrontation” is stated to exceed the other by one
seventh, while it would be just as possible to say that the second falls short of the first by one eighth.
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The first “confrontation” thus turns out to be 7 ⋅ 30′ = 3°30′, and the second
6 ⋅ 30′ = 3.5

Figure 3.5: The two squares of BM 13901 #10.

BM 13901 #14

Obv. II

44. The surfaces of my two confrontations I have heaped: 25′25″.
45. The confrontation, two-thirds of the confrontation and 5′, nindan.
46. 1 and 40′ and 5′ over-going 40′ you inscribe.
47. 5′ and 5′ you make hold, 25″ inside 25′25″ you tear out:

Rev. I

1. 25′ you inscribe. 1 and 1 you make hold, 1. 40′ and 40′ you make hold,
2. 26′40″ to 1 you join: 1°26′40″ to 25′ you raise:
3. 36′6″40‴ you inscribe. 5′ to 40′ you raise: 3′20″

4. and 3′20″ you make hold, 11″6‴40⁗ to 36′6″40‴ you join:
5. by 36′17″46‴40⁗, 46′40″ is equal. 3′20″ which you have made hold
6. inside 46′40″ you tear out: 43′20″ you inscribe.
7. igi 1°26′40″ is not detached. What to 1°26′40″

8. may I posit which 43′20″ gives me? 30′ its bandûm.
9. 30′ to 1 you raise: 30′ the first confrontation.
10. 30′ to 40′ you raise: 20′, and 5′ you join:
11. 25′ the second confrontation.

5One might believe the underlying idea to be slightly different, and suppose that the original squares
are subdivided into 7×7 respectively 6×6 smaller squares, of which the total number would be 1‵25,
each thus having an area equal to 21°15′

1‵25 = 15′ and a side of 30′. However, this interpretation is
ruled out by the use of the operation “to make hold”: Indeed, the initial squares are already there, and
there is thus no need to construct them (in TMS VIII #1 we shall encounter a subdivision into smaller
squares, and there their number is indeed found by “raising”—see page 78).
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Even this problem deals with two squares (lines Obv. II.44–45).6 The some-
what obscure formulation in line 45 means that the second “confrontation” equals
two-thirds of the first, with additional 5′ nindan. If 𝑐1 and 𝑐2 stands for the two
“confrontations,” line 44 informs us that the sum of the areas is □(𝑐1) + □(𝑐2) =
25′25″, while line 45 states that 𝑐2 = 40′ ⋅ 𝑐1 + 5′.

This problem cannot be solved by means of a simple false position in which
a hypothetical number is provisionally assumed as the value of the unknown—
that only works for homogeneous problems.7 The numbers 1 and 40′ in line 46
show us the way that is actually chosen: 𝑐1 and 𝑐2 are expressed in terms of a new
magnitude, which we may call 𝑐:

𝑐1 = 1 ⋅ 𝑐 , 𝑐2 = 40′ ⋅ 𝑐 + 5′.

That corresponds to Figure 3.6. It shows how the problem is reduced to a simpler
one dealing with a single square□(𝑐). It is clear that the area of the first of the two
original squares (□(𝑐1)) equals (1 × 1)□(𝑐), but that calculation has to wait until
line Rev. I.1. The text begins by considering □(𝑐2), which is more complicated
and gives rise to several contributions. First, the square □(5′) in the lower right
corner: 5′ and 5′ you make hold, 25″. This contribution is eliminated from the
sum 25′25″ of the two areas: 25″ inside 25′25″ you tear out: 25′ you inscribe.
The 25′ that remains must now be explained in terms of the area and the side of
the new square □(𝑐).

□(𝑐1), as already said, is 1 × 1 = 1 times the area □(𝑐): 1 and 1 you make
hold, 1.8 After elimination of the corner 5′ × 5′ remains of□(𝑐2), on one hand, a
square □(40′𝑐), on the other, two “wings” to which we shall return imminently.
The area of the square□(40′𝑐) is (40′ ×40′)□(𝑐) = 26′40″□(𝑐): 40′ and 40′ you
make hold, 26′40″. In total we thus have 1+26′40″ = 1°26′40″ times the square
area □(𝑐): 26′40″ to 1 you join: 1°26′40″.

6This part of the tablet is heavily damaged. However, #24 of the same tablet, dealing with three
squares but otherwise strictly parallel, allows an unquestionable reconstruction.
7In a simple false position, indeed, the provisionally assumed number has to be reduced by a factor
corresponding to the error that is found; but if we reduce values assumed for 𝑐1 and 𝑐2 with a certain
factor—say, 1

5—then the additional 5′ would be reduced by the same factor, that is, to 1′. After
reduction we would therefore have 𝑐2 = 2

3 𝑐1 + 1′.
8This meticulous calculation shows that the author thinks of a new square, and does not express□(𝑐2)
in terms of □(𝑐1) and 𝑐1.
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Figure 3.6: The two squares of BM 13901 #14.

Each “wing” is a rectangle ⊏⊐(5′, 40′𝑐), whose area can be written
5′ ⋅ 40′𝑐 = 3′20″𝑐: 5′ to 40′ you raise: 3′20″. All in all we thus have the
equation

1°26′40″□(𝑐) + 2 ⋅ 3′20″𝑐 = 25′.

This equation confronts us with a problem which the Old Babylonian author
has already foreseen in line Rev. I.2, and which has caused him to postpone until
later the calculation of the wings. In modern terms, the equation is not “normal-
ized,” that is, the coefficient of the second-degree term differs from 1. The Old
Babylonian calculator might correspondingly have explained it by stating in the
terminology of TMS XVI that “as much as (there is) of surfaces” is not one—see
the left part of Figure 3.7, where we have a sum of 𝛼 square areas (the white rect-
angle⊏⊐(𝑐, 𝛼𝑐)) and 𝛽 sides, that is, the shaded rectangle⊏⊐(𝑐, 𝛽), corresponding
to the equation

𝛼□(𝑐) + 𝛽𝑐 = Σ

(in the actual case, 𝛼 = 1°26′40″, 𝛽 = 2 ⋅ 3′20″, Σ = 25′). This prevents us from
using directly our familiar cut-and-paste procedure. “Breaking” 𝛽 and making
the two “moieties” “hold” would not give us a gnomon.



52 3. Techniques Second Degree

Figure 3.7: Transformation of the problem 𝛼□(𝑐) + 𝛽𝑐 = Σ.

The Babylonians got around the difficulty by means of a device shown in
the right-hand side of figure 3.7: the scale of the configuration is changed in
the vertical direction, in such a way that the vertical side becomes 𝛼𝑐 instead
of 𝑐; in consequence the sum of the two areas is no longer Σ (= 25′) but 𝛼Σ(=
1°26′40″ ⋅ 25′ = 36′6″40‴): 1°26′40″ to 25′ you raise: 36′6″40‴ you inscribe.
As we see, the number 𝛽 of sides is not changed in the operation, only the value
of the side, namely from 𝑐 into 𝛼𝑐.9

In modern symbolic language, this transformation corresponds to a multipli-
cation of the two sides of the equation

𝛼𝑐2 + 𝛽𝑐 = Σ

by 𝛼, which gives us a normalized equation with the unknown 𝛼𝑐:

(𝛼𝑐)2 + 𝛽 ⋅ (𝛼𝑐) = 𝛼Σ,

an equation of the type we have encountered in BM 13901 #1. We have hence
arrived to a point where we can apply the habitual method: “breaking” the shaded
rectangle and make the two resulting “moieties” “hold” a quadratic complement
(see Figure 3.8); the outer “moiety” is lightly shaded in its original position and
more heavily in the position to which it is brought). Now, and only now, does the
calculator need to know the number of sides in the shaded rectangle of Figure 3.7
(that is, to determine 𝛽). As already said, each “wing” contributes 5′40″ = 3′20″

sides. If the calculator had worked mechanically, according to fixed algorithms,
9This device was used constantly in the solution of non-normalized problems, and there is no reason
to suppose that the Babylonians needed a specific representation similar to Figure 3.7. They might
imagine that the measuring scale was changed in one direction—we know from other texts that their
diagrams could be very rough, mere structure diagrams—nothing more than was required in order to
guide thought. All they needed was thus to multiply the sum Σ by 𝛼, and that they could (and like
here, would) do before calculating 𝛽.
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he would now have multiplied by 2 in order to find 𝛽. But he does not! He knows
indeed that the two wings constitute the excess that has to be “broken” into two
“moieties.” He therefore directly makes 3′20″ and 3′20″ “hold,” which produces
the quadratic complement, and “joins” the resulting area 11″6‴40⁗ to that of the
gnomon 36′6″40‴: 3′20″ and 3′20″ you make hold, 11″6‴40⁗ to 36′6″40‴

you join: […] 36′17″46‴40⁗.

Figure 3.8: BM 13901 #14, the normalized problem.

36′17″46‴40⁗ is thus the area of the completed square, and its side
√36′17″46‴40⁗ = 46′40″: by 36′17″46‴40⁗, 46′40″ is equal. This number
represents 1°26′40″⋅𝑐+3′20″; therefore, 1°26′40″𝑐 is 46′40″−3′20″ = 43′20″:
3′20″ which you have made hold inside 46′40″ you tear out: 43′20″ you in-
scribe. Next, we must find the value of c. 1°26′40″ is an irregular number,
and the quotient 46′40″/1°26′40″ is given directly as 30′:10 1°26′40″ is
not detached. What to 1°26′40″ may I posit which 43′20″ gives me? 30′ its
bandûm.

In the end, 𝑐1 and 𝑐2 are determined, 𝑐1 = 1⋅𝑐 = 30′, 𝑐2 = 40′⋅𝑐+5′ = 25′:11
30′ to 1 you raise: 30′ the first confrontation. 30′ to 40′ you raise: 20′, and 5′
you join: 25′ the second confrontation. The problem is solved.

10The quotient is called ba.an.da. This Sumerian term could mean “that which is put at the side,”
which would correspond to way multiplications were performed on a tablet for rough work, cf. note
11, page 21.
11That the value of c1 is calculated as 1⋅c and not directly identified with c confirms that we have
been working with a new side c.
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TMS IX #1 and #2

#1

1. The surface and 1 length I have heaped, 40′. ¿30, the length,? 20′ the width.
2. As 1 length to 10′ the surface, has been joined,
3. or 1 (as) base to 20′, the width, has been joined,
4. or 1°20′ ¿is posited? to the width which 40′ together with the length ¿holds?
5. or 1°20′ toge⟨ther⟩ with 30′ the length holds, 40′ (is) its name.
6. Since so, to 20′ the width, which is said to you,
7. 1 is joined: 1°20′ you see. Out from here
8. you ask. 40′ the surface, 1°20′ the width, the length what?
9. 30′ the length. Thus the procedure.

#2

10. Surface, length, and width I have heaped, 1. By the Akkadian (method).
11. 1 to the length join. 1 to the width join. Since 1 to the length is joined,
12. 1 to the width is joined, 1 and 1 make hold, 1 you see.
13. 1 to the heap of length, width and surface join, 2 you see.
14. To 20′ the width, 1 join, 1°20′. To 30′ the length, 1 join, 1°30′.
15. ¿Since? a surface, that of 1°20′ the width, that of 1°30′ the length,
16. ¿the length together with? the width, are made hold, what is its name?
17. 2 the surface.
18. Thus the Akkadian (method).

As TMS XVI #1, sections #1 and #2 of the present text solve no problem.12
Instead they offer a pedagogical explanation of the meaning to ascribe to the addi-
tion of areas and lines, and of the operations used to treat second-degree problems.
Sections #1 and #2 set out two different situations. In #1, we are told the sum of
the area and the length of a rectangle; in #2, the sum of area, length and width is
given. #3 (which will be dealt with in the next chapter) is then a genuine problem
that is stated and solved in agreement with the methods taught in #1 and #2 and
in TMS XVI #1.

Figure (3.9) is drawn in agreement with the text of #1, in which the sum of
a rectangular area and the corresponding length is known. In parallel with our
symbolic transformation

ℓ ⋅ 𝑤 + ℓ = ℓ ⋅ 𝑤 + ℓ ⋅ 1 = ℓ ⋅ (𝑤 + 1),

12The tablet is rather damaged; as we remember, passages in ¿…? are reconstructions that render the
meaning (which can be derived from the context) but not necessarily the exact words of the original.



3. Techniques Second Degree 55

Figure 3.9: TMS IX, #1.

the width is extended by a “base.”13 That leads to a whole sequence of expla-
nations, mutually dependent and linked by “or … or … or,” curiously similar to
how we speak about the transformations of an equation, for example

“2𝑎2 − 4 = 4, 𝑜𝑟 2𝑎2 = 4 + 4, 𝑜𝑟 𝑎2 = 4, 𝑜𝑟 𝑎 = ±√4 = ±2”.

Line 2 speaks of the “surface” as 10′. This shows that the student is once
more supposed to know that the discussion deals with the rectangle ⊏⊐(30′,20′).
The tablet is broken, for which reason we cannot know whether the length was
stated explicitly, but the quotation in line 6 shows that the width was.

In the end, lines 7–9 shows how to find the length once the width is known
together with the sum of area and length (by means of a division that remains
implicit).

#2 teaches how to confront a more complex situation; now the sum of the
area and both sides is given (see Figure 3.10). Both length and width are pro-
longed by 1; that produces two rectangles ⊏⊐(ℓ, 1) and ⊏⊐(𝑤, 1), whose ar-
eas, respectively, are the length and the width. But it also produces an empty
square corner ⊏⊐(1,1). When it is filled we have a larger rectangle of length

13The word ki.gub.gub is a composite Sumerian term that is not known from elsewhere and which
could be an ad hoc construction. It appears to designate something stably placed on the ground.
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Figure 3.10: TMS IX, #2.

ℓ + 1 (= 1°30′), width 𝑤 + 1 (= 1°20′) and area 1 + 1 = 2; a check confirms that
the rectangle “held” by these two sides is effectively of area 2.

This method has a name, which is very rare in Old Babylonian mathematics
(or at least in its written traces). It is called “the Akkadian (method).” “Akkadian”
is the common designation of the language whose main dialects are Babylonian
and Assyrian (see the box “Rudiments of general history”), and also of the major
non-Sumerian component of the population during the third millennium; there is
evidence (part of which is constituted by the present text) that the Old Babylonian
scribe school took inspiration for its “algebra” from the practice of an Akkadian
profession of surveyors (we shall discuss this topic on page 108). The “Akkadian”
method is indeed nothing but a quadratic completion albeit a slightly untypical
variant, that is, the basic tool for the solution of all mixed second-degree problems
(be they geometric or, as with us, expressed in number algebra); and it is precisely
this basic tool that is characterized as the “Akkadian (method).”


